
OS-Level Surface Haptics for Touch-Screen Accessibility
Suhong Jin, Joe Mullenbach, Craig Shultz, J. Edward Colgate, Anne Marie Piper

Northwestern University
2145 Sheridan Road
Evanston, IL 60208

{suhongjin, mullenbach, craigdshultz}@u.northwestern.edu, {colgate, ampiper}@northwestern.edu

ABSTRACT
The TPad Tablet combines an Android tablet with a variable
friction haptic touch-screen and offers many novel interaction
possibilities. For example, unique textures may be associated with
different user interface elements, such as text boxes and buttons.
This paper presents an Android AccessibilityService that was
created to give operating system-wide (OS) access to haptic effects.
Prior to this work, the haptic feedback of the TPad could be
controlled only from within specific applications. With the new
implementation, all applications and primary user interfaces (e.g.
home screen) will have access to the TPad. Rather than focus on
specific elements or applications, we seek to provide a high fidelity
haptic experience that elevates the TPad’s accessibility to the
standard of Talkback and Voiceover, Android’s and Apple’s
accessibility programs respectively. The code for the application is
available on our website.

Categories and Subject Descriptors
H.5.2 [Information Interfaces And Presentation]: User Interfaces -
Haptic I/O. K.4.2 [Social Issues]: Assistive Technologies For
Persons With Disabilities.

Keywords
Surface Haptics, Touchscreen, Tablet, Accessibility, Variable
Friction

1. INTRODUCTION
Existing accessibility solutions such as Apple’s Voiceover and
Android’s Talkback services rely heavily on audio cues [3, 5]. Both
programs speak to the user, providing information on the current
screen and any UI element that a user touches. As has been
previously reported, auditory feedback may not always be the
optimal solution [11]. Users may not hear well in noisy
environments and headphones can limit user’s awareness of
obstacles in their path and surroundings. With haptic feedback, a
user can quickly identify different elements on the screen [11]. To
realize this vision more broadly, we implemented OS-level haptic
accessibility using the TPad Tablet, a variable friction haptic
surface integrated with a 7-inch Android tablet shown in Figure 1
[8, 12]. Different than vibration feedback that is most common in
mobile devices today, the TPad surface is driven ultrasonically to
reduce friction between the surface and the fingertip. This creates a
slippery feeling that is felt only when the fingertip slides across the
screen, and not on the hand that is holding the device. Past versions
of the TPad Tablet software allowed haptic feedback to be accessed

through specific applications that called TPad methods. In this
project, an operating system-level interface to haptic functionality
was created through Android’s AccessibilityService.

2. Background
In recent years, several attempts have been made to improve touch-
screen accessibility for people with vision impairments.
Touchplates [10] gave users different acrylic overlays, including a

Figure 1: TPad in use on the home screen

QWERTY keyboard and a numeric keypad to provide tactile
feedback during typing. Other overlays include a map, mouse, and
a menu bar. While a useful solution, the user is constrained to a
physical haptic guide, limiting its flexibility and requiring them to
manage physical plates in addition to their device. Haptic rendering
of images has also been researched to allow devices to provide
haptic feedback on 2d images [6, 9]. By analyzing the colors of the
images, various textures were mapped to the image.
Electrovibration haptic feedback has also been used in a mobile,
visuo-tactile sensory device for the visually impaired [1]. The
device has an attached webcam used to explore the user’s
surroundings and identify an object of interest. The object is
displayed on a screen at which point a finger can be swept across
the screen, in essence feeling the object.

Other techniques focus on novel gesture-based input to improve
accessibility of number entry (e.g. DigiTaps [11]). In this system,
the user performs a unique combination of swipes and taps to input
a specific digit. The system provides haptic feedback to notify the
user that the gesture was received and correctly interpreted. Audio
feedback is also optionally available.

3. Implementation
In the present work, rather than focus on specific elements or
applications, we seek to provide high fidelity haptic experience that
increases accessibility across the entire device, much as Talkback
and Voiceover do for audio. We use a time based friction
modulation method to create distinct “texture tones”, single-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

frequency amplitude modulated variable friction waveforms, for
different icons and elements on the screen. This method of variable
friction rendering has been used in previous studies, and was found
to have a range of expressive capabilities, interpreted by users as a
physical texture, as a sensation, or as an action [7].

3.1 AccessibilityService
An AccessibilityService is a background service that can be
installed on an Android device and turned on through the
Accessibility section of the settings of the smart device [2].
Talkback is one example of an AccessibilityService [5]. The
AccessibilityService detects when the user interface’s state
changes. When the user puts his or her finger down on the screen
(Figure 1), the service alerts the system of the touch interaction. If
the user enters a view (for example, a button) the service also
detects that change. As the users explores different UI elements,
any changes are sent to the service to be handled.

3.2 Integrating the TPad
The TPad communicates with Android applications through IOIO
libraries [4]. The IOIO libraries specific to Android applications
have been modified to generate a custom library. When a developer
creates an Android application, he or she adds this custom library
to use the TPad-specific methods. For the AccessibilityService, a
IOIO class that worked with services, instead of applications was
created. The front-end TPadAccessibilityService class utilizes this
new IOIO class to access the TPad.

3.3 Handling AccessibilityEvents
All AccessibilityService classes require an onAccessiblityEvent
method. This method is called when an AccessibilityEvent is
triggered. The TPadAccessibilityService focuses primarily on two
AccessibilityEvents. The VIEW_HOVER_ENTER event occurs
when a user slides his or her finger over a UI element, while
VIEW_HOVER_EXIT is triggered when exiting a UI element.
When the user’s finger moves to a UI element, the TPad sends a
texture tone while exiting the element turns the TPad off.
Information about the UI element examined can be retrieved
through AccessibilityRecords [2]. For example, the service can
retrieve the contentDescription tag of elements, a concept Android
documentation has stressed when implementing accessibility for
applications. In the current implementation of the service, a look-
up table of a few popular applications is searched with the UI
element’s currentDescription, though this could easily be expanded
and customized to cover all applications. If the string is in the table,
a unique texture is generated. Otherwise, the service checks the
view’s properties (editable, checkable, clickable, etc.). Each of
these different properties have different texture tones to distinguish
them from each other.

4. Advantages of AccessibilityService
With an operating system-level implementation of the TPad,
Android application developers need not add TPad-specific code.
The AccessibilityService automatically generates TPad texture
tones through the service. However, developers can still add
additional haptic feedback by implementing TPad methods within
their application. Using the AccessibilityService also allows the
TPad to work on the home screen, and other native applications.
The AccessibilityService can also allow Android developers to
customize a texture tone for a given element in their application.
The developer can pass a Bundle with the properties of a TPad
texture (floats for frequency and amplitude and an integer for wave

type). The AccessibilityService can retrieve the Bundle through the
AccessibilityRecord and generate the custom texture.

The ability to generate specific textures based on whether a view is
editable, checkable, clickable, etc. elevates the TPad Tablet’s
accessibility toward the standard of Voiceover & Talkback. A user
can be on any screen in the smart device, whether it’s the home
screen, the browser, or a specific application, and detect buttons,
checkmarks, and edit boxes not just with audio and vibrational
feedback from Voiceover & Talkback, but also with variable
friction surface haptic feedback from the TPad.

5. Conclusion
Android’s AccessibilityService has been used to give developers
operating system-wide access to haptic feedback via the TPad. This
makes the TPad available not just in specific applications, but in
the home screen and other native application pages and should pave
the way to broader and more diverse uses of surface haptic
technology. The code is open-source and available for download
[12].

6. ACKNOWLEDGMENTS
This work was supported by NSF Grant 0964075, McCormick
School of Engineering, and the Segal Design Institute. Thanks also
to the open-source IOIO project [4]. Special thanks to the many
contributors to The TPad Tablet Project [12].

7. REFERENCES
[1] Ali Israr, Olivier Bau, Seung-Chan Kim, and Ivan Poupyrev.

2012. Tactile feedback on flat surfaces for the visually
impaired. New York, NY, USA, 1571-1576.

[2] Android Accessibility. http://developer.android.com/guide/
topics/ui/accessibility/index.html. Acc. June 17, 2014.

[3] Apple Inc., iPhone Accessibility.
http://www.apple.com/accessibility/ios/. Acc. June 16, 2014.

[4] Ben-Tsvi, Y. IOIO Documentation.
https://github.com/ytai/ioio/wiki. Acc. June 17, 2014.

[5] Google, Android Accessibility Help Center. http://www.
support.google.com/talkback/. Acc. June 16, 2014.

[6] Jialu Li, Aiguo Song, and Xiaorui Zhang. 2010. Image-based
haptic texture rendering. New York, NY.

[7] Joe Mullenbach, Craig Shultz, J. Edward Colgate, Anne
Marie Piper. 2014. Exploring Affective Communication
Through Variable-Friction Surface Haptics. (CHI ’14). New
York, NY.

[8] Joe Mullenbach, Craig Shultz, Anne Marie Piper, Michael
Peshkin, and J. Edward Colgate. 2013. Surface haptic
interactions with a TPad tablet. (UIST '13 Adjunct). New
York, NY.

[9] Seung-Chan Kim, Ki-Uk Kyung, Dong-Soo Kwon. 2011.
Haptic annotation for an interactive image. New York, NY.

[10] Shaun K. Kane, Meredith Ringel Morris, and Jacob O.
Wobbrock. 2013. Touchplates: low-cost tactile overlays for
visually impaired touch screen users. New York, NY.

[11] Shiri Azenkot, Cynthia L. Bennett, and Richard E. Ladner.
2013. DigiTaps: eyes-free number entry on touchscreens
with minimal audio feedback. New York, NY.

[12] TPad Tablet Project. http://www.tpadtablet.org. Acc. June
17, 2014.

	1. INTRODUCTION
	2. Background
	3. Implementation
	3.1 AccessibilityService
	3.2 Integrating the TPad
	3.3 Handling AccessibilityEvents

	4. Advantages of AccessibilityService
	5. Conclusion
	6. ACKNOWLEDGMENTS
	7. REFERENCES

