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Abstract— We present a method to experimentally identify
the inverse dynamics of a human arm. We drive a person’s
hand with a robot along smooth reaching trajectories while
measuring the motion of the shoulder and elbow joints and
the force required to move the hand. We fit a model that
predicts the shoulder and elbow joint torques required to
achieve a desired arm motion. This torque can be supplied
by functional electrical stimulation of muscles to control the
arm of a person paralyzed by spinal cord injury. Errors in
predictions of the joint torques for a subject without spinal cord
injury were less than 20% of the maximum torques observed in
the identification experiments. In most cases a semiparametric
Gaussian process model predicted joint torques with equal or
less error than a nonparametric Gaussian process model or a
parametric model.

I. INTRODUCTION

People living with high spinal cord injuries do not have
full voluntary control of their arms. They are limited in daily
tasks which require reaching such as opening doors and feed-
ing themselves. Restoration of reaching would allow people
with high spinal cord injuries to live more independently.
Approximately 273,000 people are living with spinal cord
injuries in the United States. Since 2010, 52.2% of spinal
cord injury patients discharged from hospitals have a high
spinal cord injury, which limits the use of their arms [1].

Functional electrical stimulation (FES) is a promising
technology for restoring reaching to people with paralysis.
Functional electrical stimulation causes muscles to contract
and induce joint movements. Although FES has had success
in some applications [2], [3], [4], engineers have not yet
exploited the full capability of the musculoskeletal system
to perform a wide range of tasks using FES. Complex
movements such as reaching require the coordination of
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multiple muscles acting across multiple joints of the skeletal
system.

FES applications requiring multiple muscles have gen-
erally used fixed muscle activation patterns. For instance,
the Freehand System R© [5] provides users control of their
hand but does so by having only a few stereotyped stimu-
lation patterns. FES controllers for walking [6] and cycling
[7] also use stereotyped movements. While controllers for
stereotyped movements have restored some function, there
is clearly a need for flexible control strategies that can
achieve arbitrary goals subject to the constraints of the
musculoskeletal system.

We propose a two-part model-based strategy for flexible
control of a paralyzed human arm. The first part is to identify
the inverse dynamics of the arm, or more specifically to
determine the shoulder and elbow torques needed to induce
desired shoulder and elbow joint accelerations for any current
set of shoulder and elbow joint positions and velocities. The
second part is to determine how to electrically stimulate
muscles to produce those torques. The focus of this paper is
on the first part: identifying the inverse dynamics of the arm
for any specific human subject.

While powerful computer models of the human arm exist
[8], [9], these models rely on data from cadavers and even
include data from more than one subject. They do not
describe a specific FES-controlled system on a living person.
Additionally, speed of computation of these computer models
is an issue for real-time control. A model identified for
a specific subject will be more useful in control than an
idealized model developed for a computer simulation.

One challenge in developing an accurate subject-specific
model is capturing the complexity of the human arm. Besides
the rigid body dynamics that might describe a robot arm,
the human arm dynamics include torques manifesting from
the stiffness and damping in the muscles, tendons, and
skin, among other factors. In addition, individual passive
muscle models are difficult to identify because they cannot
be isolated without removing the muscles from the skeleton.
Finally, people with spinal cord injuries typically use some
sort of passive arm support in unison with FES. The dynam-
ics of the arm support must be included when identifying
the arm inverse dynamics. Because of all of these factors
the human arm dynamics cannot be accurately represented
by a model linear in some set of parameters as is often the
case with the inverse dynamics of a robot arm [10].

A second challenge in developing an accurate subject-
specific model is to generalize over a large space of joint
positions, velocities, and accelerations. Black-box function

2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2014)
September 14-18, 2014, Chicago, IL, USA

978-1-4799-6933-3/14/$31.00 ©2014 IEEE 3585



Fig. 1. Instrumentation for experiments. The picture shows placement of
the rigid bodies with reflective markers for optical tracking. The mobile arm
support is on the left of the picture with dark blue rubber bands on the far
left providing supporting force. The subject’s hand and distal forearm are
in a soft cast that is attached via a magnet to a ball-and-socket joint at the
end effector of the HapticMaster robot.

approximators may require a large amount of training data
to produce an accurate model. Time is of the essence in
identifying models for people with spinal cord injuries. Long
training sessions discourage use of assistive devices and
introduce system nonstationarity as muscles fatigue.

To address these two challenges we explore the use
of Gaussian process regression with encoded global prior
information. Gaussian processes have the flexibility to model
complex nonlinearities, and they can easily incorporate prior
knowledge that can aid in generalizing to unexplored regions
of the workspace. Gaussian process regression has been
shown to be superior to a parameterized rigid-body-dynamics
model and a locally weighted projection regression model
for predicting the inverse dynamics of a seven-degree-of-
freedom SARCOS robot arm [11]. Incorporating global basis
functions into a semiparametric Gaussian process model has
been demonstrated to further decrease error in predicting
the inverse dynamics of a seven-degree-of-freedom Barrett
WAM robot arm [12].

This paper makes two primary contributions. The first is
the presentation of an experimental method to identify the
inverse dynamics of a human arm by moving a person’s hand
with a robot while measuring the human arm’s shoulder and
elbow joint positions, velocities, and accelerations along with
the interaction force at the interface of the hand and the
robot’s end effector. The second is to show the advantages
of using a semiparametric Gaussian process model over a
purely nonparametric Gaussian process model or a purely
parametric model. We quantify the ability of parametric,
semiparametric, and nonparametric model structures to gen-
eralize in predicting shoulder and elbow torques.

II. METHODS

To achieve the goals of this study we collected motion and
force data from reaching movements of two subjects. One
subject has a spinal cord injury, and the other subject does
not. Briefly, a subject’s hand is placed in a cast attached to
the end of a robot. The robot drives the subject’s hand along

various smooth reaching trajectories. During the execution of
the reaching trajectories an optical system tracks the motion
of the subject’s arm, while the robot measures the force
required to drive the hand along the trajectory. Based on
the configuration of the arm, the forces required to drive
the hand are transformed into equivalent torques about the
shoulder and elbow. Subsection II-A describes the subjects
and the test setup for these experiments.

We fit models mapping the motions of the arm, namely
the shoulder and elbow joint positions, velocities, and ac-
celerations, to the torques about the shoulder and elbow
joints needed to drive the arm motions. Three different model
structures were explored: (1) a parametric structure with
stiffness and damping terms for each degree of freedom, (2)
a nonparametric Gaussian process model, and (3) a semi-
parametric model that uses the structure of the parametric
model within the framework of a Gaussian process model.
Subsection II-B describes these models in detail.

To quantify and compare the effectiveness of each of the
three model structures in predicting torques, we computed
the leave-one-out cross-validation error for the models in
predicting the torque outputs given new inputs to the models.
These analyses are described in Subsection II-C.

A. Experiment Setup and Data Collection

This section describes the collection of data to compute
shoulder and elbow joint positions, velocities, accelerations,
and torques from experiments with two subjects. The first
subject was a 56-year-old woman who sustained a hemisec-
tion of the spinal cord at the C1-C2 level from a gunshot
wound in 1994. She cannot move her right arm, but she has
some sensation and pain hypersensitivity. She experiences
hypertonia in some of her arm muscles. Due to hypertonia
the range of motion of her right arm is limited. This subject
also has a surgically implanted FES device that was not used
for this study. More details on this subject are included in
[13] (Subject 1). The other subject was a 28-year old male
with no history of musculoskeletal disorders. Protocols used
for research were approved by the internal review boards
at Northwestern University (IRB NO. STU00018382) and
MetroHealth Medical Center (IRB NO. 04-00014).

The shoulder elevation plane, shoulder elevation, shoulder
internal rotation, and elbow flexion as defined in [14] are
referred to as joint positions, and their first and second
derivatives are referred to as joint velocities and accelera-
tions. We refer to torques corresponding to these four degrees
of freedom as joint torques. The axes of rotation for the
shoulder are seen in Fig. 2. Our model does not consider
elbow pronation as it does not affect the position of the wrist,
which is ultimately what we are trying to control.

A HapticMaster (Moog FCS) robot with three degrees of
freedom moved the subject’s hand along smooth reaching
trajectories. The robot reports the 3D position of its end
effector based on encoder data, and the robot has a three-
axis force sensor at its end effector. The subject’s hand was
placed in a soft cast, and the cast was attached by a magnet to
a ball-and-socket joint on a tie-rod end bolted to the robot’s
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Fig. 2. The shoulder rotations are Euler angles with a YXY order. The
shoulder elevation plane is the rotation about the Yh axis. Shoulder elevation
is rotation about the resulting Xh axis. Shoulder rotation is rotation about
the resulting Yh axis. This figure is adapted from [14] with the permission
of the authors.

end effector as seen on the right in Fig. 1. The magnet acted
as a safety mechanism, releasing the subject’s hand if the
robot applied more force than the magnet could hold.

Using the output from the robot’s force sensor we compute
the corresponding torques about each subject’s shoulder and
elbow joints. A force fm ∈ R3 is measured at the robot’s
end effector and is transmitted through the ball-and-socket
joint. The force at the ball-and-socket joint is transformed to
a wrench fr ∈ R6 at the subject’s wrist. The moment is the
cross-product of the vector rwb ∈ R3 from the wrist to the
ball-and-socket joint and the force at the ball-and-socket joint
fm, so fr = [fm rwb × fm]>. The corresponding torques
about the shoulder and elbow joints are τ r = J>r (q)fr ∈ R4

where Jr ∈ R6×4 is the kinematic Jacobian of the subject’s
arm at the wrist.

To track the movement of the subject’s arm we collected
sensor measurements from the robot and from an Optotrak
Certus Motion Capture System (Northern Digital, Inc.). The
robot reported the position of its end effector. We fixed rigid
bodies with reflective markers to the subject’s chair, upper
arm, and forearm (Fig. 1). The coordinate system of the chair
rigid body was aligned with the subject’s thorax. The motion
capture system recorded the position and orientation of each
rigid body with respect to a global coordinate system.

We estimated the shoulder and elbow joint positions,
velocities, and accelerations offline using an extended Rauch-
Tung-Striebel (RTS) smoother, which is essentially an ex-
tended Kalman filter run forward and backward. We im-
plemented the RTS smoother by adding smoothing to the
extended Kalman filter method and MATLAB R© code from
[15]. This method combines sensor information and a simple
dynamic model of the arm’s motion. It takes into account
errors in marker placement, errors from assumptions of the
arm dynamics, sensor noise, and marker movement during
arm motion. Under these conditions the method performs the
locally optimal estimate of the joint positions, velocities, and
accelerations.

During a reaching trajectory the subject’s hand moved
in a straight line from a home position to a target position,
stayed at the target position for one second, and then returned
to the home position (Fig. 3). The position s along the
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Fig. 3. Plot of hand position and hand velocity vs. time for the reaching
trial with the longest distance travelled for the subject without SCI.

straight line was a fifth-order polynomial in time, so s =
c0 + c1t + c2t

2 + c3t
3 + c4t

4 + c5t
5. A unique solution

for the coefficients c0, . . . , c5 can be found given the total
time to complete the trajectory, the total spatial length of the
trajectory, and zero initial and final velocity and accelera-
tion. The polynomial trajectories ensured smooth positions,
velocities, and accelerations. The two home positions were
in front of the subject’s mouth and in front of and just below
the subject’s shoulder. Target positions were determined by
moving the subject’s hand as high and to the right as possible,
as high and to the left as possible, as low and to the right
as possible, and as low and to the left as possible. For the
subject without SCI these four extremes were limited by the
workspace of the mobile arm support or of the robot. For
the subject with SCI these four extremes were limited by
the range of motion of her arm.

The robot moved the hand of the subject without spinal
cord injury to nine target positions. The subject was told
to relax his arm during the reaching movements. A planar
three-by-three grid of target positions was constructed with
the four extreme targets at the corners. The distance from
each home position to each target position varied from 12
cm to 45 cm, and the time to reach from home to target was
a constant two seconds, so the maximum speed of the hand
during a single trajectory varied from 11 cm/s to 42 cm/s.
Each home position and target position combination was run
three times for a total of 2*9*3 = 54 reaching trajectories.

The robot moved the hand of the subject with spinal cord
injury to a smaller target set at slower speeds and in a
more limited workspace. Her hand was moved to four limit
locations as with the other subject, and these locations were
used as targets. Four randomly selected trajectories were run
and repeated three times for a total of 12 trajectories. She
completed trajectories starting at the mouth to high left, high
right, and low right targets and a trajectory starting in front
of the shoulder to the low right target. The distance from
each home position to each target position varied from 16
cm to 36 cm, and the time to reach from home to target was
a constant three seconds, so the maximum speed of the hand
during a single trajectory varied from 10 cm/s to 23 cm/s.

A mobile arm support supported each subject’s arm against
gravity. The mobile arm support, pictured on the left of
Fig. 1, applies force at the subject’s forearm and at the end
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of the humerus. The force is primarily a vertical force, but
also has components in the horizontal plane. Arm supports
are often needed by people with spinal cord injury because
muscle atrophy leaves muscles too weak to lift the arm
against gravity. FES is sufficient to move the arm given that
the arm support compensates for gravity.

B. Inverse Dynamics Models

The equations of motion for the arm when no muscles are
activated are

B(q)q̈+C(q, q̇)q̇+ g(q) + τ (q, q̇) = J>r (q)fr + τ s, (1)

where q ∈ R4 is a vector of joint angles, q̇ ∈ R4 is
a vector of joint velocities, and q̈ ∈ R4 is a vector of
joint accelerations. The four joint angles are the elevation
plane, shoulder elevation, shoulder rotation, and elbow
flexion described in Subsection II-A. The inertia matrix
is B(q) ∈ R4×4, the matrix of Coriolis and centrifugal
terms is C(q, q̇) ∈ R4×4, and the vector of gravity terms is
g(q) ∈ R4. The vector of torques due to the passive stiffness
and damping of the muscles is τ (q, q̇) ∈ R4. The first
term on the right-hand side of (1) is the vector of shoulder
and elbow torques τ r = J>r (q)fr ∈ R4 corresponding to
the wrench applied to the subject’s wrist by the robot. The
second term on the right-hand side of (1) is the vector of
shoulder and elbow torques τ s ∈ R4 corresponding to the
forces applied by the mobile arm support.

We can compute the torques applied to the arm by
the robot based on measurements of the shoulder and
elbow joint angles and the wrench applied by the robot
to the subject’s wrist as described in Section II-A. The
input to our models is x =

[
q>, q̇>, q̈>

]>
. We rewrite (1) as

τ r = p(x) = B(q)q̈+C(q, q̇)q̇+g(q)+τ (q, q̇)−τ s, (2)

where p(x) represents the torques that must be applied
to the shoulder and elbow joints to produce desired joint
accelerations given the current joint positions and velocities.
The goal is to identify a model of p(x) given a series of joint
positions, velocities, and accelerations and forces applied by
the robot to move the subject’s hand. We do not explicitly
model any of the individual terms on the right-hand side of
(2).

1) Parametric Model: A model that is linear in its pa-
rameters is preferred because we can use linear regression
to identify the model and avoid solving a nonlinear opti-
mization problem. A full parametric model might include a
typical parameterization of B(q)q̈, C(q, q̇)q̇, and g(q) in
(2) based on the mass, center or mass, and moments of inertia
of the humerus and forearm. The contribution of passive
muscle forces τ (q, q̇) might be modeled by a function of
polynomials of the joint positions and velocities [16] that is
linear in its parameters. The contribution from the mobile
arm support τ s can by modeled as a linear function of the
stiffness of the rubber bands of the arm support and their
slack length.

After considering this full parametric model we found

more success with a simpler parametric model where the
torque about a single degree of freedom pp(x) is dominated
by joint stiffness and damping as in

pp(x) = h(x)>β = ks(θ − θ0) + kdθ̇, (3)

where θ and θ̇ are the position and velocity of the given
joint, θ0 is the equilibrium position of the given joint, and
ks and kd are the joint stiffness and damping. Here β =
[−ksθ0 ks kd]> is a column vector of parameters, and
h(x) = [1 θ θ̇]> is a column vector of basis functions.
The joint equilibrium position is the position where the joint
rests when muscles are relaxed and no external forces are
applied. It depends on the passive stiffness of the muscles
and the stiffness of the arm support.

The transition from the full parametric model with coupled
degrees of freedom in (2) to the simpler single-joint model in
(3) is based on a number of observations. First because the
reaching motions are generally slow, the inertial, Coriolis,
and centrifugal terms in (2) are small compared to the
gravity terms along with the passive stiffness and damping
of the muscles and arm support. Second, the arm support
essentially cancels out gravity, but still provides stiffness in
the horizontal plane. This leaves only stiffness and damping
as captured in (2).

We use linear regression to estimate the vector of pa-
rameters β and predict the torque given a new test input
x∗. Gathering data from smooth reaching trajectories we
construct the matrix H ∈ Rn×3 where each row is h(x)>

evaluated at each training input, and y is a column vector of
n training outputs. From linear regression the estimate of the
parameters in (3) is β̂ = (H>H)−1H>y. After constructing
the vector of basis functions h(x∗) evaluated at a test input
x∗ the prediction pp(x∗) of the parametric model given a
test input x∗ is

pp(x∗) = h(x∗)
>β̂. (4)

The variance of the prediction of the parametric model is
vp(x∗) = σ2

n

(
1 + h(x∗)

>(H>H)−1h(x∗)
)
, where σ2

n is
the variance in the torque output.

2) Nonparametric Model: The second of the three mod-
els is a purely nonparametric Gaussian process model. A
Gaussian process is a collection of random variables, any
finite number of which have a joint Gaussian distribution
[11]. An infinite collection of random variables amounts to
a random function, so a Gaussian process can be viewed as
a distribution of random functions.

A Gaussian process is defined by its mean function m(x)
and its covariance function k(x,x′). The covariance function
defines how much the output of a random function at input
x depends on the output of the random function at input x′.
A covariance function is defined by its vertical scale and a
length scale, which are referred to as hyperparameters. The
vertical scale defines how much a particular function drawn
from the distribution can deviate from the mean function,
and the length scale defines how much the function output
can change with a change in the input. A small length scale
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allows for large changes, and a large length scale only allows
for small changes in the output given a change in the input.

The nonparametric model has a Gaussian process prior
distribution with zero mean and a squared-exponential co-
variance function,

pn(x) ∼ GP(0, k(x,x′)). (5)

The hyperparameters of the covariance function are found
by maximizing the marginal likelihood or evidence of the
training data, which is a standard technique for model
selection in Gaussian process regression [11]. Maximizing
the marginal likelihood balances training error and model
complexity.

Inference with Gaussian processes amounts to assuming
a prior distribution of random functions, collecting training
samples, and then choosing those functions from the prior
distribution that best agree with the training samples. The
remaining functions make up the posterior distribution which
is also a Gaussian process.

The prediction pn(x∗) of the nonparametric model given
a test input x∗ is just the mean of the posterior Gaussian
process evaluated at the test input

pn(x∗) = k>∗ (K + σ2
nI)−1y (6)

where y is a column vector of n training outputs, k∗ ∈ Rn

is a vector where the ith element is the covariance function
evaluated at the test input and the ith training input, and
K ∈ Rn×n is a matrix of the covariance function evaluated
at all combinations of training inputs. Recall that the model
inputs are the joint positions, velocities, and accelerations of
the arm, and the outputs are the corresponding joint torques.
The variance of the prediction of the nonparametric model
is vn(x∗) = k(x∗,x∗)− k>∗ (K + σ2

nI)−1k∗.

3) Semiparametric Model: The last of the three models is
a semiparametric Gaussian process model which incorporates
into a Gaussian process model knowledge of the arm dy-
namics encoded in a parametric model. The semiparametric
model uses its locally relevant Gaussian process component
to predict complex dynamics near training data and its
globally relevant parametric part to generalize to places in
the input space that are far from the training data.

The semiparametric model is a Gaussian process where
the mean function is the parametric model in (3) and the
covariance function is the sum of a squared-exponential
covariance function and a term that takes into account the
uncertainty in the parameters of the linear model,

ps(x) ∼ GP(h(x)>b, k(x,x′) + h(x)>Bh(x)). (7)

This is the semiparametric Gaussian process form proposed
in [17]. It makes the prior assumption that the parameters
β of the linear model are distributed normally with mean
b ∈ Rk and covariance B ∈ Rk×k. The vector of basis
functions h(x)> is the same as in (3). We use the mean
and covariance of the parameters found from fitting the
parametric model to a data set to define the prior parameter

distribution for the semiparametric model.
The vertical scale hyperparameter of the squared-

exponential covariance function k(x,x′) was found by max-
imizing the marginal likelihood or evidence of the training
data while the length scale parameters were chosen a priori
to be small to allow the nonparametric part of the model
to dominate in making predictions for test inputs close to
the training inputs and the parametric part of the model to
dominate for test inputs that are not close to the training
inputs.

The prediction ps(x∗) of the semiparametric model given
a test input x∗ is the mean of the posterior Gaussian process
evaluated at the test input

ps(x∗) = h(x∗)
>β̄ + k>∗ K

−1
y (y −H>β̄), (8)

where Ky = K + σ2
nI . The posterior estimate

of the parameters of the linear model is β̄ =
(B−1 + HK−1y H>)−1(HK−1y y + B−1b). The first
term on the right-hand side of (8) is the predicted output
of the parameterized linear model. The second term is
the prediction of the residuals of the parameterized linear
model, and its magnitude depends on how close the test
input is to the training inputs. Note that the terms Ky

and k∗ for the semiparametric model will be different
in general than those terms for the nonparametric model.
The variance of the prediction of the semiparametric
model is vs(x∗) = k(x∗,x∗) − k>∗ K

−1
y k∗ + (h(x∗) −

HK−1y k∗)
>(B−1 +HK−1y H>)−1(h(x∗)−HK−1y k∗).

C. Analysis of Model Learning

To compare the ability of the three models to generalize
to new test data, we computed the leave-one-out cross-
validation (LOOCV) error for each model. Each model was
identified on a training data set and then made predictions of
torque outputs given inputs from a test data set, which the
model did not use for training. The root mean square (RMS)
error of the model’s predictions of the outputs from the test
data set is the generalization error.

For the subject without spinal cord injury each model was
trained on each of 18 training sets and tested on each of 18
corresponding test sets. The subject completed 18 unique
trajectories three times, so a training set included 17 of
these trajectories, and a test set included the trajectory that
was left out of the training set. Each of the 18 different
training sets left out a different trajectory. For the subject
with spinal cord injury there were four training sets each
including three unique trajectories with each corresponding
test set comprised of the left out trajectory.

III. RESULTS

Joint angles and torques from one trial for the subject
with spinal cord injury are shown in Fig. 4 along with
the semiparametric model’s predictions of the torques. The
actual torques are almost always captured by the confidence
intervals around the model’s predictions. The confidence
intervals also show the typical variation in the torque from
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Fig. 4. Filtered joint angles and joint torques for one of the 12 arm
trajectories for the subject with spinal cord injury. The thick solid lines
represent the actual joint angle or torque from the experiment. The thick
dashed lines represent the prediction of the semiparametric model that was
trained with the nine trajectories that were different from the trajectory
pictured. The shaded regions represent the 95% confidence intervals.

one of three repeated trials to the next given the same
inputs. In general the range of joint angles was smaller
and the torques required to move the arm were larger for
the subject with spinal cord injury, as that subject has a
smaller range of motion but more passive muscle stiffness
due to hypertonia. Also note that the torques vary mainly
with the corresponding joint angle, so the stiffness term in
the parametric model (3) plays a significant role.

Stiffness was the dominant source of passive torque for
both subjects (Table I). The subject with spinal cord injury
had more passive stiffness and damping than did the subject
without spinal cord injury. The larger stiffness coefficients for
the subject with spinal cord injury were due both to larger
passive stiffness in the muscles and more rubber bands on the
arm support to support a heavier arm. There was almost no
damping in the subject without spinal cord injury. Note that
coefficients for shoulder rotation are not reported in Table I
because they were not significantly greater than zero.

The semiparametric model predicted joint torques for a
subject without spinal cord injury generally within 20% of
the maximum torque required to drive the subject’s hand
(Fig. 5(a)). The exception is an outlier for shoulder rotation
of just under 40%. The nonparametric model performed
similarly, but with more outliers with large errors. The
generalization error was found by training a model on all
but one set of trajectories and testing that model on the
set that was left out. Note that the training error (see solid
circles in Fig. 5) was almost always smaller than the median
generalization error for the nonparametric and semipara-
metric models although the training error was inside the
95% confidence region for the semiparametric model. This
suggests that gathering more training data could improve the
predictions.

The predictions of torques were not as good for the subject

TABLE I
PARAMETRIC MODEL COEFFICIENTS

θ0 ks kd

(deg) (N-m/deg) (N-m/deg/s)
SCI elevation plane 82 0.13 0.070

non-SCI elevation plane 14 0.01 0.007
SCI shoulder elevation 49 0.12 0.064

non-SCI shoulder elevation 17 0.10 0.003
SCI elbow flexion 116 0.08 0.051

non-SCI elbow flexion 81 0.04 0.009

with spinal cord injury (Fig. 5(b)). Errors were between
10% and 40% for the semiparametric model. We attribute
much of the additional error for the subject with spinal cord
injury to the smaller identification data set which included
12 trajectories compared to 54 trajectories for the subject
without spinal cord injury.

The superiority of the semiparametric model is illustrated
in its performance on the more sparse data set of the
subject with spinal cord injury. When all 18 trajectories were
completed as with the subject without spinal cord injury
the semiparametric model predicted torques as well as the
nonparametric model and better than the parametric model
(Fig. 5(a)). This shows that when presented with a set of
test inputs similar to the training data the nonparametric
and semiparametric models do very well because of the
flexibility of the Gaussian process. When presented with a set
of test inputs that are unlike the training data as was the case
with the subject with spinal cord injury, the nonparametric
model does poorly (see blue boxes in Fig. 5(b)) while the
semiparametric model that has the parametric model encoded
a priori does much better in predicting torques (see green
boxes in Fig. 5(b)).

IV. DISCUSSION

We presented a method for identifying the inverse dynam-
ics of any specific subject’s arm and quantified the error in
the method’s predictions of joint torques. We also showed the
advantage of using the semiparametric model structure over a
pure nonparametric structure. The semiparametric structure
includes prior information about the dynamics encoded in
a linear model. This advantage is most evident when there
are small data sets available and a model must generalize to
other parts of the workspace of the arm. When working with
people with spinal cord injuries gathering large amounts of
system identification data is not feasible.

The method presented in this paper is critical in the design
of flexible controllers for functional electrical stimulation. It
allows us to use a computed-torque-type controller where
we predict the joint torques required to produce desired
joint accelerations given the current joint positions and
velocities. Now we can specify a hand trajectory, compute the
corresponding trajectory in joint space, and then determine
the joint torques required to execute the trajectory. This work
is a part of a larger study that also characterizes the ability
of muscles controlled by functional electrical stimulation to
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Fig. 5. Box plots for subject without spinal cord injury (a) and for subject with spinal cord injury (b). The horizontal lines inside the boxes represent the
median RMS LOOCV errors of the predictions of the three models over the 18 unique test trajectories. The RMS torque error for each degree of freedom
was normalized by the maximum torque magnitude for that degree of freedom over the entire data set for the subject. The boxes represent the 25%-75%
confidence intervals, and the whiskers represent 5%-95% confidence intervals. The red crosses are the RMS LOOCV errors for outliers. The solid circles
represent the mean training error for each model. Each set of three box plots is for an individual degree of freedom.

produce these desired torques and control the motion of the
arm of a person with a high spinal cord injury.

One source of error in our torque predictions is the size of
the data sets considered here. While this can be addressed
with longer test sessions with people without spinal cord
injuries, this is simply not possible when working with
people with spinal cord injuries due to fatigue and other
conditions related to their injuries. Small data sets are a fact
of life, and the use of the semiparametric models to combine
the flexibility of the Gaussian process with the generalization
power of the parametric model is a direct response to this
fact.

Another source of error is the limitation in accurate
predictions of joint kinematics with optical tracking systems.
Motion capture markers move relative to the skeleton in
experiments especially as muscles are activated. Velocity
and acceleration of joints are difficult to measure directly.
Progress can be made in these tracking systems. We also plan
in the future to incorporate uncertainties to the inputs of our
model, which are the estimates of joint positions, velocities,
and accelerations, into the Gaussian process framework.
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