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Simple walking models, like the compass-gait model, have yielded useful insight

into the basic mechanics of walking. A similar model serves as a template for
brachiation. With the ability of a two-link robot to walk and swing, we explore

the multi-locomotion capability of a generalized two-link model with potential

footholds at any location. We focus on the connected components of passive
gaits in a five-dimensional state-time space. Our main results are: (1) a walking

gait and a brachiating gait cannot be in the same connected component and (2)

the stability of a gait depends on whether impacts are state-based (e.g., footfall
in a biped walker) or time-based (e.g., time between clamping brachiator hands

to a wall). For the same connected component of gaits, the different impact

types result in different bifurcations.
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1. Introduction

We study the passive hybrid dynamics of planar, single-joint, two-link walk-

ing and brachiating robot models. These simplified models of walking and

brachiating have been studied extensively in the past.1–4 These locomotors

are modeled as a hybrid system, where two continuous swing motions are

separated by an impact with a surface causing a discontinuous jump in

velocity.

We generalize the two-link walking models1,3 and brachiator models2,5

to a single model that can both walk and brachiate. This allows us to

study robots like our wall-climbing Gibbot robot,4 which can achieve a

“foothold” anywhere on a vertical plane. Since the “feet” of the generalized

model can achieve a foothold at any location on a vertical plane, we can

study two impact strategies: switching the stance foot when (1) it “collides”

with a fixed virtual slope (state-based impacts) or (2) a set period of time
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Fig. 1. An example of (a) the two-link model (b) walking and (c) brachiating on the

same downhill slope. The swing leg is the lightly shaded link.

has elapsed (time-based impacts). Figure 1 shows a simple two-link model

walking and brachiating on the same downhill slope.

In the past, simple two-link models have successfully guided the design of

several walking and brachiating robots.5–8 Yet, with the exception of work

by Fukuda et al.,9 walking and brachiating robots are treated separately

because of their distinct environments. Given our generalized model, could

walking and brachiating gaits actually be considered examples of the same

type of gait? Furthermore, the same gait can be achieved by either state-

based or time-based impact. But is there a difference in stability depending

on the type of impact?

We address these two questions by studying the connected components

and stability of gaits in our generalized model. We define a gait as a period-

one fixed point of the hybrid dynamics in a five-dimensional state-time

space. For a period-one fixed point, the state corresponds to the robot’s

post-impact state at the beginning of a new swing and time corresponds to

the period of time between impacts. Gaits in the same connected component

have a path connecting them.

Definition 1. A path between two gaits a and b is a continuous function

f from the unit interval [0, 1] to the set of gaits in R5 such that f(0) = a

and f(1) = b.

If a path exists between two gaits, then it is possible to continuously deform

one gait into the other. We give an example in Section 3.

Similar to the terminology used in the walking community, we refer

to the link that is in contact with the surface as the stance leg and the

other link as the swing leg. After an impact the roles of the two links

switch. For motions of the swing leg relative to the stance leg where the

net displacement does not exceed one revolution during a step, the net

displacement can only have two possible values. These values map the swing

leg trajectory to a net motion where the links cross once or not at all. We

define walking and brachiating gaits based on this notion of links crossing.
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Definition 2. The links cross when the net angular displacement of the

swing leg relative to the stance leg does not equal the difference between

the final and initial angles of the swing leg relative to the stance leg. For a

walking gait, the links cross. For a brachiating gait, the links do not cross.

We return to this definition in Section 3. Our contributions are

(1) Walking and brachiating fixed points are not in the same con-

nected component of gaits. We show that walking and brachiating

gaits are two disjoint sets. We explore a connected component in each

set through numerical simulation and show that both gaits can pas-

sively locomote above or below a fixed slope. For example, we show

that it is possible to continuously deform a walking gait that walks on

ground to a gait that passively “walks” on an inclined ceiling.

(2) The impact strategy affects the stability of a gait. We find

that state-based switching leads to more stable gaits than time-based

switching. When gaits become unstable, state-based switching leads

to period-doubling bifurcations (stable period-2n gaits, n ≥ 1), and

time-based switching leads to Neimark-Sacker bifurcations (n-periodic

or quasiperiodic gaits, n > 1).

We define the hybrid dynamics of the system in Section 2. In Sections 3

and Section 4 we show (1) and (2), respectively. We conclude in Section 5.

2. The Hybrid Dynamics

The physical parameters of each link of the robot are identical to each

other, which allows us to define a gait in half a swing of the robot. The

configuration vector (Figure 1(a)) of the robot is q′ = [qx, qy, q1, q2]T , where

(qx, qy) are the x-y coordinates of the stance leg in a world frame, q1 is

the angle of the stance leg from the vertical, and q2 is the angle of the

swing leg relative to the stance leg. The pivot point (qx, qy) remains fixed

throughout the swing motion. For convenience, during the swing we use a

reduced configuration vector q = [q1, q2]T with state vector x = [qT , q̇T ]T .

We define the flow of the continuous dynamics of the double pendulum as

x(x0, t) = x0 +

∫ t

0

F (x(s)) ds,

where x0 is the initial state of the robot at time s = 0, t is the impact time,

and F (x(s)) = [q̇(s)T , q̈(s)T ]T .

When the robot impacts, it undergoes an instantaneous, plastic impact.

The configuration of the robot does not change, but its velocity does. The
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impact map H relates the pre-impact state to the post-impact state of the

robot at the time of impact and is defined as

H(x) =

[
A 0

0 P (q)

]
x+

[
bT 0 0

]T
,

where A =
[
1 1
0 −1

]
∈ R2x2 and b = [ π0 ] ∈ R2 flip the coordinate system, and

P (q) ∈ R2x2 relates the pre-impact velocity q̇− to the post-impact velocity

q̇+ such that q̇+ = P (q−)q̇−. A detailed derivation of the equations and

parameters used for our two-link model can be found in a previous paper.4

In sum, the hybrid system is written as a discrete map G : R4×R→ R4

x1 = H(x(x0, t)) = G(x0, t),

where x0 is the initial state, x(x0, t) is the pre-impact state, and x1 is the

final state after the impact at time t. A “gait” is a period-one fixed point

(x∗0, t
∗) satisfying x∗0 = G(x∗0, t

∗). The fixed point is stable if the maximum

eigenvalue of ∂G
∂x0

(x∗0, t
∗) is inside the unit circle.

3. Connected components in the state-time space

In our search for gaits, we allow the state and impact time to vary. In this

five-dimensional state-time space, we define the set of all gaits as

X =
{

(x0, t) ∈ R5 | G(x0, t)− x0 = 0
}
,

where x0, t, and G are defined in Section 2. Let S = (X,O ∩X) be a

subspace topology of the standard topology T = (R5,O), where O is the

collection of open sets in R5. By the implicit function theorem, if the Jaco-

bian matrix

J(x∗0, t
∗) =

[
∂G

∂x0

∂G

∂t

]
(x∗0, t

∗)−
[
∂x0
∂x0

∂x0
∂t

]
has maximal rank at a fixed point (x∗0, t

∗), then nearby solutions form a

1-D curve passing through (x∗0, t
∗) in the state-time space. If J(x∗0, t

∗) does

not have maximal rank, then locally the nature of the connected com-

ponent requires further analysis. It is at these fixed points where multiple

1-D curves can intersect. We trace the connected components of X using an

Euler-Newton numerical continuation method.10 There are many connected

components in the 5-D state-time space. Figure 2 shows parts of two con-

nected components projected onto a 2-D subspace of the state-time space.

The connected component of walking gaits in Figure 2(a) is comprised of

three 1-D curves glued together at two fixed points ([π, π, 0, 0]T , 1.59) and
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Fig. 2. Parts of two connected components projected onto the q2-t plane. Every point
is a gait in the state-time space. The cartoon animations are the swing motions at points

A-E. The walking connected component has an infinite number of solutions3 branching

off the curve at q2 = 180◦, while the brachiating curve does not have branching solutions.

([π, π, 0, 0]T , 1.78), where J(x∗0, t
∗) is not maximal rank. The black, straight-

line curve at q2 = 180◦ consists of the state [π, π, 0, 0]T for all switching

times t∗. The state is an equilibrium point of the double pendulum dy-

namics. For the connected component of brachiating gaits in Figure 2(b),

J(x∗0, t
∗) evaluated at every fixed point along the curve has maximal rank.

Because of this, the curve has a unique arc-length parameterization.11 There

are other 1-D solution curves of brachiating gaits (see, e.g., Figure 4), but

these curves are not connected to each other.

In the Introduction, we defined walking and brachiating based on
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Fig. 3. The trajectory of the swing leg of two gaits with the same initial configuration

q ≈ (−174.1◦, 100.6◦) are shown. The arrow on the circle corresponds to the net displace-

ment of the swing leg relative to the stance leg, the plot is the swing leg’s trajectory
scaled to each gait’s switching time, and the animations are snapshots of the robot’s

trajectory over time. The net displacement of the walking gait (a) crosses 180◦ (i.e., the

links cross), while the brachiating gait (b) crosses zero (i.e., the links did not cross).

whether the links cross or not. For a trajectory to be a fixed point, the

angle of the swing leg must equal q2(t) = −q2(0) = −q∗2 prior to impact.

This puts a constraint on the net angular displacement of the swing leg

∆q2 =

∫ t

0

q̇2(s)ds = 2πk − 2q∗2 ,

where k is an integer. For |∆q2| ≤ 2π, the net angular displacement has

the intuitive meaning of the links crossing or not crossing (Figure 3). If

q∗2 ∈ [−π, π],a then k ∈ {−1, 0, 1}, where k = 0 is a brachiating gait and

|k| = 1 is a walking gait. We have now partitioned the set of fixed points

into two sets. Let B and W be the set of fixed points with values of |k|
equal to 0 and 1, respectively. By construction, we have that B ∪W = X.

If there is a continuous path between fixed points in B and W, then there

aRemoving −π or π excludes brachiating either counterclockwise or clockwise at q∗2 = π.
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must exist a fixed point on the path that is in both sets. Such a fixed

point cannot exist, because this would mean that the same state has two

different trajectories—one where the links cross and another where they

do not. This cannot be true as solutions to the differential equation of the

double pendulum are unique. Hence, B ∩ W = ∅ and no path can exist

between gaits in these sets.

While a continuous path cannot exist between a walking gait and a

brachiating gait, connected components in both B and W connect gaits that

locomote above and below the surface. Figure 2(a) shows a path in W that

continuously deforms a walking gait starting at the gait labeled B to what

is often referred to as “over-hand”9 brachiation (gait C). Topologically, this

gait is equivalent to a gait that “walks” below the surface.

4. Stability and Bifurcations
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(a) state-based switching

1.9 2 2.1 2.2 2.3

-25°

-20°

-15°

-10°

-5°

0°

t

s 2.12 2.14 2.16 2.18 2.2 2.22
-40°
-30°
-20°
-10°

0°
10°
20°
30°

t

s

Critical point of
Neimark-Sacker bifurcation

Critical point of
fold bifurcation

(b) time-based switching

Fig. 4. Stability of gaits on a brachiating solution curve under (a) state-based and (b)

time-based impacts. The impacts can occur at a fixed slope σ or switching time t. The
blue segments of the curve are stable fixed points and the red are unstable. The types

of bifurcation are also highlighted. The insets show the higher period gaits that result.

The switching time t plays an interesting role in our model. If we treat

it as a free parameter, then we can impact whenever we want. If instead the

robot impacts when it returns back to its initial slope σ, then t = t(x0) is

dependent on the state. Figure 4 shows the stability of a 1-D curve of brachi-

ating gaits under the two switching strategies as we move along the curve

(this curve does not intersect the curve in Figure 2(b), which does not have

stable time-based gaits). In the example of Figure 4, the set of stable time-

based switching gaits is a subset of the set of stable state-based switching

gaits. In our experience, all gaits that are stable under time-based switching

are also stable under state-based switching, but the converse is not true.

While both switching strategies give rise to fold bifurcations, we have also
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observed period-doubling bifurcations in the case of state-based switching

and Neimark-Sacker bifurcations12 in the case of time-based switching.

5. Conclusion

We have presented results on the connected components and stability of

gaits for a two-link robot capable of brachiating and walking using a gen-

eralized two-link model. We have shown that walking and brachiating are

distinct gaits, but they are not differentiated by moving above or below a

slope. We have also shown that the impact strategy affects the stability of

a gait, where state-based impacts are more stable than time-based impacts.

For future work, we plan to extend our model to powered gaits in a state-

control space that includes control parameters for an actuator at the joint.

Do connected components remain disconnected in this higher-dimensional

state-control space or are they part of the same connected component that

appears disconnected when projected onto the 5-D state-time space of pas-

sive gaits studied in this paper?
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