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Abstract— Tracking the position of moving objects requires
tight coordination of sensing and movement, in both biological
contexts such as prey pursuit and capture, and in target
localization by mobile robots. Algorithms for target tracking
often use a probabilistic map, or information map, of the
domain to guide active search. Though it is reasonable to expect
that the best approach would be to choose control actions
driving the robot toward the maximum of this information map,
we show improved performance in simulation by using a simple
heuristic incorporating the time history of robot movement
into the map. Furthermore, our results indicate that as the
distribution of robot positions approaches the distribution of
the density of information, the variance of the estimate is
decreased and tracking improves. We conclude that control
actions based solely on information maximization may under-
perform in information orientated tasks, such as the estimation
of moving target positions.

I. INTRODUCTION

Mobile robots and animals share the common problem
of exposure to uncertain environments from which some
certainty must be derived to remain viable. Robots and
animals both require sensory data in order to make sense
of their surroundings and perform tasks such as navigation,
object identification, etc. For short range sensors, movement
is often required to maintain a steady stream of useful
information about the environment. With movement comes
an energetic cost [1], however, so movement strategies must
be optimized to gain the most useful information about the
environment, leading to an entire field of study called active
search.

In robotics, a variety of methods have been proposed in
active search. Often, robots gather sensor data to estimate
some unknown parameter about their environment. This
unknown parameter could be the location of an object to
track or a distinguishing feature of an object that requires
identification. An ideal sensor without noise would be able
to determine this parameter with a single measurement (i.e.
there is a one-to-one correspondence between the sensor
reading and the value of the parameter). However, most
sensors receive noisy measurements, and even in noise-free
cases, a measurement could result in multiple possibilities
for the value of the parameter. A suitable method for active
search should therefore choose a control action which will
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Fig. 1: Schematic of our object tracking method using a time-discounted
information map. The robotic sensor is tasked with locating and tracking
an object moving in 1D. A simple control strategy might be to ascend
the map in order to reach locations of maximum information. Our method
discounts the information map according to the recent position history of
the robot, allowing for a more distributed exploration of the original map
using a simple and real-time control law. This time-discounted information
map method results in better estimates over information maximization.

best minimize the variance of the parameter belief function
while also resulting in an accurate estimate.

The inherent problem in active search is that the utility
of a future measurement must somehow be predicted, given
that the measurement itself is dependent on the uncertain
parameter. Predicting measurement utility can be accom-
plished using entropy related metrics [2], [3] or information
measures [4]–[6]. As searching the entire space of control
actions can be expensive, methods of locally maximizing
or approximately maximizing such metrics are often used.
For example, local control actions can be chosen in order
to maximize expected measurement utility over a set of
candidate control actions [3], [7], [8]. Alternatively, local
gradient-based methods based on an information metric
[6], [9] can be used to drive sensors towards informative
sensor states. While these methods prove sufficient in many
situations, local information maximization (info-max) meth-
ods may fail when the belief, and therefore the expected
measurements, are highly uncertain or multimodal. These
issues are particularly likely to arise if the parameter is time-
varying.

Alternatively, the global maximum of an information map
over the whole search domain can be used to inform control
decisions [10]. One might expect that moving the sensor
towards the peak of this information map will result in
robust estimation. This approach is, however, still likely to
fail when the belief is uncertain, incorrect, or multimodal,



which will be demonstrated in Section III. We show that
choosing control actions that are based on the distribution of
information, as opposed to the local information or maximum
information, can improve performance in these situations.
We achieved distributed active sensing quiding our sensor
using an information map that has been discounted according
to recent sensor position history, allowing us to track the
position of a moving target (see Fig. 1).

While the control strategies for animals performing active
search is a large open area of research, there is some evidence
that animals perform costly movements as a trade-off for
gaining information. Electric fish swim at a drag-inducing
pitched angle to sweep more area with their limited-range
sensors [1]. Similarly, blue crabs orient themselves upstream
at a drag inducing angle after detecting an odorant, likely
to obtain a better estimate on the local gradient of odorant
molecules [11]. Bats orient their ultrasonic clicks slightly
away from the location of targets in regions where Fisher
Information is maximized [12]. A recent study in electric
fish show a large increase in whole-body oscillations when
tracking a moving refuge by means of their electrosensory
system compared to when using their visual system [13].
Could these strategies be considering areas of increased
information density when planning control? Would these
strategies benefit from a more distributed sensing approach
compared to going to areas of maximum information? Inves-
tigation into solving these problems in robotics could lead
to insight on these questions in animals.

II. METHODS

A. Algorithm overview

Algorithm 1
1: Init. d(0),V0(0),Υ(θ, d), ε
2: Init. p(θ) to a uniform distribution
3: Calculate the Fisher Information I(θ, d) (Eqn. 1)
4: while True do
5: Calculate expected information density (EID) map

using p(θ) and I(θ, d) (Eqn. 2)
6: Calculate sensor position history to discount EID

(Fig. 2)
7: Update control f from time-discounted EID (tEID)

(Eqn. 5)
8: Take measurement and update pi(θ) (Section II-D)
9: i=i+1

10: end while

The algorithm presented in this paper reformulates the
algorithm in Silverman et. al. (2013) [14]—which was
designed to localize a static object—in order to track a
moving object. Previously, a trajectory was planned for
a finite block of time, executed, and then repeated with
the updated belief of the object location (more generally,
object parameter θ). The current algorithm takes into account
the recent trajectory of the sensor along with the expected
information density (EID) of the parameter when executing

the subsequent control. For example, the sensor will explore
areas of lower EID if areas of higher EID had been explored
recently. An overview of this method is shown in Algorithm
1.

As in Silverman et. al. (2013) [14], we assume knowledge
of the measurement model for θ, given by v = Υ(θ, d) + δ.
Υ is a function of both the deterministic sensor position d as
well as the unknown parameter θ and can vary depending on
the type of sensor used and the parameter being estimated. δ
adds a zero mean noise with variance σ2. The measurement
model could be derived from first principles if the physics of
the sensor are well known, or empirically obtained through
experiment.

It might be natural to choose control strategies that pro-
duce trajectories maximize information by moving toward
the maximum point in the EID. In Algorithm 1, this infor-
mation maximizing strategy can be accomplished by omitting
step 6 and by using the EID in step 7. The main result
in this paper is that the information maximizing strategy
fails dramatically even in the simplest 1D tracking tasks;
distributing information acquisition produces more robust
estimations of the parameter being tracked, at least in these
1D tasks.

B. Fisher Information

Given the measurement model v, we can calculate the
Fisher Information (FI) as in Silverman et. al. (2013) [14].
FI correlates to the amount of information a measurement
will provide at sensor location x for a specific value of θ.
Assuming Gaussian noise of the measurement, FI can be
calculated as

I(θ, d) =

∫
v

(
∂p(v|θ)
∂θ

)2
1

p(v|θ)
dv. (1)

The belief about the value of θ is represented by the
probability density function (PDF) p(θ) and evolves as mea-
surements are collected (see Section II-D). To calculate the
expected information density (EID), we take the expectation
of the Fisher Information over the belief of the parameter
using

Φ(x) =

∫
θ

I(θ, x)p(θ) dθ. (2)

The calculation of FI (I) and EID (Φ) are unchanged from
the algorithm presented in Silverman et. al. (2013) [14].

C. Sensor position history and control update

To accommodate the dynamic nature of the object and
the associated EID, we introduce two forms of “forgetting”
into our algorithm, so that guidance by memory (our be-
lief and corresponding information map based on previous
measurements) is less prone to error. The first form is to
forget, with a certain time constant, the EID of recently
visited locations. We call the result the time-discounted EID,
or tEID. A schematic of this method is shown in Fig. 2. The
second is to forget the current estimate of the parameter,
which will be further explained below. For this work, the
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Fig. 2: Calculation of position history function for discounting the expected
information density. The blue line shows an example trajectory of the sensor
over the last 6 seconds, where time = 0 indicates the current time. The
colormap indicates how the function is created over time. The top plot
indicates the level of the discounting as a function of time. Bright yellow
indicates areas of high magnitude for the discounting function. The right
plot is the sum of the discounting function over all time, which is then
combined with the EID so that positions of high magnitude (areas recently
visited by the sensor) are discounted heavily whereas low magnitudes (areas
not recently visited by the sensor) are not discounted.

time-constants associated with these two forms of forgetting
were tuned manually by visualizing the resulting trajectories,
whereas future versions of this algorithm would benefit from
automatic tuning based on the frequency spectrum of the
estimated parameter.

A control update was then calculated using the tEID. The
specific control law to use may depend on the dynamics of
the robot and the dimensionality of the problem. We chose to
focus on a very simple control law to show the effectiveness
of using a time-discounted map, which is given in Section II-
E. For the rest of this article, this method of control is labeled
the tEID method.

D. Bayesian update and evolution of the belief

The PDF of the parameter p(θ) is updated through a
similar Bayesian update as in Silverman et. al (2013) [14].
The update is given by

p(θ|V ) = ηp(V |θ)p(θ), (3)

where p(θ) is the prior belief, V is the measurement,
p(V |θ) is the innovation, and η is a normalization factor.
For estimating an unchanging parameter, the innovation is
calculated from

p(V )|θ) =
1√
2πσ

exp

[
(Υ(θ, d)− V )2

σ2

]
. (4)

However, here we model the evolution of the parameter
(position in the case of a moving object) as a Gaussian
distribution centered at the current value of the parameter
(also known as a stochastic maximum velocity method). As

the parameter is represented by a probability distribution, the
calculation amounts to convolving the distribution for the
parameter at the previous iteration with the Gaussian distri-
bution representing the possible evolution of the parameter.
Therefore, the belief of the parameter flattens out over time
if no new measurements are taken, effectively ‘forgetting’
some knowledge of the location of the object. This flattened
distribution then becomes the prior in Eqn. 3. This procedure
allows the estimate of the parameter to change over time,
even if nothing is known deterministically about how the
parameter might evolve. This update method, chosen for
simplicity, could easily be replaced by other methods, such
as a particle filter.

E. Example Problem

We simulated a single sensor that gathers measurements
as it passes by an object in 1D. The global position of
that object is the unknown parameter θ. Υ(θ, d) models the
sensor measurement as a function of sensor position and the
parameter. We chose to compare three sensor models as well
as two control strategies. The first strategy takes into account
the tEID as described above. The second strategy follows the
maximum of the EID, irrespective of where the sensor has
been. We analyzed the results for trials where the object
oscillates with a period of 15 seconds and an amplitude of
0.11 meters. We experimented with other object trajectories
though results were qualitatively similar.

We chose a simple control law based on the tEID, where
the input f drives the sensor toward the peak of the tEID
with a magnitude inversely proportional to the tEID at the
current location, given by

f ∝ argmaxx tEID(x)− d
tEID(d)|| argmaxx tEID(x))− d||2

(5)

where tEID is the time-discounted EID function over the
domain x and d is the current position of the sensor. The info-
max method calculates the input f in the same way, the only
difference being that the EID is used instead of the tEID. The
result is that the sensor moves towards the global maximum
of the information map. The sensor dynamics consist of a
simple second order linear system with an inertial term, a
damping term, and no stiffness with full actuation in 1D
given by

md̈+ bḋ = f, (6)

where m and b are the mass and damping coefficient
of the sensor. This model represents the dynamics of our
underwater electrosensory robot with which we will perform
future experiments [15].

F. Performance Measures

Three performance measures were used to quantify the
results. First, the norm was calculated for the error signal
between the estimated and actual object position during the
steady state phase of tracking (the last 20 seconds). Two
error signals were derived based on the two possible ways



Fig. 3: tEID method vs. info-max control for tracking an object. The left column shows the different measurement models tested. The first column shows
the sensor reading as an object passes by a sensor located at d = 0. The sensor models would shift up and down according to the location of the sensor.
A monophasic, symmetric measurement model is used in (A), a biphasic, symmetric model is used in (B), and a monophasic asymmetric measurement
model is used in (C). The Fisher Information for each measurement model is shown in the second column. High FI corresponds to the locations where
the magnitude of the spatial derivate of the measurement model with respect to the parameter is also high. The third and fourth columns show simulated
trials as the sensor attempts to track an object using either the tEID control method (third column) or the info-max method (fourth column). The black
trace indicates the trajectory of the object and the cyan trace indicates the trajectory of the sensor. The shaded red shows the PDF of the estimated object
position over space and time, where the red trace indicated the estimate of the object position based on the location of the maximum value of the PDF. In
all cases, the period of the object oscillation is 15 seconds and two full periods are shown. The plots underneath each trial detail the time evolution of the
variance of the estimate (blue) as well as the Jensen-Shannon divergence measure of ergodicity (green). The signal to noise ratio was 25 dB in all cases.

to estimate object position, either by the mean location of
the belief function, or the maximum location of the belief

function. These norms are reported in Table I.

Second, the variance of the belief over the time course



Fig. 4: tEID method vs. info-max control for tracking an object with lower noise. These trials are identical to those in Fig. 3 except that the amplitude of
the noise modeled was decreased by one order of magnitude. The signal to noise ratio was 45 dB in all cases. See Fig. 3 for more details.

of the trajectory was calculated. This measure relates the
confidence of the estimate over time. Third, the Jensen-
Shannon divergence (JSD) was used to measure the er-
godicity of the sensor trajectory related to the information
map (the EID). In short, the JSD is a measure of distance
between two distributions. We calculated the distribution of
sensor positions as well as the average EID in a moving
window of 3 seconds. Therefore, a value of JSD close
to zero indicates that the spatial statistics of the position
history of the sensor matches the EID (i.e. the spatial
statistics are nearly ergodic with respect to the EID). The
motivation for assessing performance using the JSD is based
on previous experimental work using ergodicity directly to
generate trajectories for target localization [14]. We sought to
assess whether or not the heuristic control law presented here
produces trajectories that are closer to ergodic than the info-
max approach, and whether or not the ergodicity corresponds
to better performance of the estimation, as was shown in the
target localization task [14]. Both the variance of the belief
and the JSD are plotted for the trials shown in Fig. 3.

III. RESULTS

We simulated trials where a mobile sensor must estimate
the location of a moving object in a high noise environment
(signal to noise ratio (SNR) = 25 dB), comparing the tEID
approach to the information maximizing approach using a
variety of measurement models, Υ(x, θ). Fig. 3A shows
results when using a symmetric, monophasic measurement
model, common in many types of sensors for simple objects
such as sonar detecting a prey. Fig. 3A shows that the
estimate of the position converges quickly and remains close
to the actual position for the tEID method, while the info-
max method rapidly flips its estimate between two possible
positions of the object because of a bimodal belief function.
These rapid changes in the estimate correspond to times
when the variance of the belief and JSD are increasing.
Norms on the tracking error are reported in Table I.

Fig. 3B shows a similar trial for a biphasic measurement
model, similar to the one used in Silverman et. al (2013) [14],
as it describes the voltage reading of our active electrosensing
system as it passes by an object. The FI for this type



Measurement
Model

Control
Method

SNR = 25 dB SNR = 45 dB
Max Mean Max Mean

Monophasic
symmetrical

tEID 0.71 2.20 0.14 0.46

Info-max 4.68 3.81 0.51 2.32
Biphasic

symmetrical
tEID 0.60 2.73 0.24 0.61

Info-max 14.5 4.48 4.69 4.82
Monophasic
asymmetrical

tEID 1.27 1.79 0.23 0.53
Info-max 0.88 2.80 0.19 0.34

TABLE I: Norm of the tracking error over the last 20 seconds of each trial
from Figs. 3 and 4. The error was calculated as the difference between
the actual object position and the estimate of the object position. The
estimate could either be calculated as the mean of the belief function, or
the maximum of the belief function. The values for the norm have units of
meters. The height of the bars is proportional to the values of the norms.

of measurement model has a large peak centered with the
object with two smaller peaks on either side. Here again, the
tEID method tracks the object reliably, whereas the info-max
method maintains a belief function with high variance of the
object position, where the estimate jumps radically.

Last, Fig. 3C show another monophasic measurement
model, only now it is asymmetric, resulting in one side of the
object containing more FI than the other side. We therefore
observe that the sensor trajectory is biased towards the side
with more FI as expected for both the tEID case and the info-
max case. While both methods track the object reasonably
well, the variance of the estimate fluctuates over time and is
generally larger on average for the info-max method. Also,
when the object changes direction, the estimate for the info-
max method briefly deviates from the sinusoidal pattern of
the object.

We also simulated the same three trials with lower noise
to determine if the SNR plays a role in how the tEID or
info-max methods perform. The results for tracking an object
moving sinusoidally with a period of 15 seconds and SNR =
45 dB are shown in Fig. 4. Norms of the tracking error are
reported in Table I.

While not shown in this article, we also simulated objects
oscillating with shorter periods, such as 5 and 10 seconds,
but keeping the amplitude of the velocity profile fixed. The
tEID and info-max methods exhibited similar behavior for
these higher frequency tracking simulations. We also varied
the initial position of the sensor and did not see any effect
on the tracking behavior.

IV. DISCUSSION

These results indicate that movement outside of regions
of maximum expected information is often necessary to
maintain good estimates while tracking objects, especially
in high-noise environments. Also, the tEID method shown
here is more robust to different measurement models as well
as differences in noise levels.

The measurement model in Fig. 3A represents a simple
sensor and a simple object. However, the symmetry of the
measurement model poses problems. First, there is no unique
maximum in the FI, as two equal peaks are offset from the
center of the object. If the info-max method is used to track
an object with this measurement model, the PDF becomes

bimodal, as a measurement from one side of the object could
indicate two possible locations for the object. Therefore,
an estimate based on the mean of the PDF would average
these two modes, but an estimate based on the maximum
of the PDF might switch rapidly between the two modes as
it does for the info-max method. Indeed, the norm of the
tracking error is relatively high for both estimates. The tEID
method, since it receives measurements from both sides of
the object, maintains a unimodal PDF; therefore the estimate
is unambiguous and the variance remains constant. Even for
low-noise situations as shown in Fig. 4A, the initial sweeps
of the sensor allow the tEID method to quickly settle on a
unimodal PDF, while the bimodal PDF persists for the info-
max method. This measurement model is likely similar to
that of a bat detecting a small prey, which also distributes
its ultrasonic clicks on either side of the prey [12].

The measurement model in Fig. 3B is similar to the
model of measurements from artificial electrosensors used in
previous studies [14]. This measurement model is interesting
because the highest FI is right at the center of the object, but
the actual measurements at that location are similar to those
that are measured far away from the object. Therefore, once
the PDF focuses on an estimate of the object, oscillations
of the sensor allow it to disambiguate between the object
being centered or far away. The info-max method has diffi-
culty with this disambiguation, persisting even in low noise
situations (Fig. 4B).

Both methods are able to track the asymmetric measure-
ment model shown in Fig. 3C and the norm for the tracking
error using the maximum as the estimate is lower for info-
max vs. tEID. However, the info-max method exhibits a bi-
modal PDF similar to that from the symmetric measurement
model in high noise situations resulting in large fluctuations
in the variance and a poorer norm when the mean of the
belief is used as the estimate. In low noise situations, the
tEID method and info-max method both perform well (the
norms on the tracking error are actually slightly lower for
info-max), and the trajectory of the tEID method appears to
converge on the info-max trajectory.

An interesting result, which is especially apparent in
the case of the two monophasic measurement models, is
the correlation between the variance of the estimate and
the ergodicity as measured by the JSD. The JSD varies
directly with the variance, indicating that times where the
ergodicity is high (low JSD), the estimate actually improves.
For the info-max control cases, there are times where the
trajectory happens to be more ergodic as a result of the
object movement, and it is at these times when the estimate
improves. The tEID method, which simply uses the time-
discounted information map (tEID), achieves the goal of
maintaining higher and more stable ergodicity. These results
show that in many object tracking situations, even if a good
estimate is quickly obtained, it can be detrimental to try to
lock the movement of the sensor to the movement of the
object.

The simple control law based on the tEID generated
distributed sensing trajectories and works well in the 1D



tracking example. However, a more rigorous control law
could be implemented and would likely be necessary for
more complicated tasks. For example, one could follow
the gradient of an ergodicity metric [16], or optimize a
trajectory by maximizing future ergodicity [14]. Both of
these examples would have to be adapted to allow for a time-
varying parameter and information map, perhaps by using an
information map that includes time-history information such
as the tEID used in this paper.

V. FUTURE WORK

Sensor oscillation, which is observed in the trajectories
exhibited by the tEID method, is a common phenomenon in
biological systems, such as full body oscillations of electric
fish in tracking behaviors [13], or small amplitude oscillation
in eyes to avoid adaptation of retinal cells. Future work
will involve testing models similar to the tEID method of
tracking with behavioral data of animals performing active
sensing. Also, we plan to implement these methods on
robotic systems to test their efficacy using real sensors
taking measurements of real objects with natural levels of
noise. We plan to adapt our methods to work for estimating
more parameters with higher dimensional movement and
to automatically tune the time constants according to the
frequency spectrum of the estimate. Finally, we would like
to incorporate energy models in which we impose a cost on
movement allowing us to optimize the trajectories of sensors
to maximize energy that is gained in the form of information
but lost in the form of movement and sensing costs.
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