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Abstract
Prior to the vertebrate invasion of land, aquatic vision
provided short range sensing with low contrast scenes.
Once on land, aerial vision provided a 100-fold increase
in range with high contrast scenes. This change in sen-
sory ecology due to emergence onto land may have pro-
vided a selective advantage to those animals that were
able to imagine alternative action sequences toward dis-
tant goals. To explore the relationship between sensory
ecology and the utility of planning, we developed a sim-
ulation of predator-prey dynamics where we controlled
visual range, planning depth, and environmental com-
plexity. Simulations show that for prey with short visual
range, increased planning results in a negligible change
in survival rate with increased environmental complexity.
However, at longer visual ranges, survival rate is strongly
correlated with planning depth and environmental com-
plexity, with peak survival rate occurring at high complex-
ity and planning depth. These data suggest that planning
is an adaptation to long range sensing enabled by terres-
trial habitats 385 million years ago. Our results point to
future research into the limitations on our temporal and
spatial range of prospective cognition, a possible result
of environments in which we have evolved, to raise aware-
ness and create circumventions for looming existential
threats.
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Introduction
When a situation affords a long latency between stimulus
and response, deliberative behavioral control can be used
to generate behavior that is strategic, variable, and hard to
predict by an adversary. As this latency decreases, reac-
tive control takes over and generates responses that are fast,
less variable, and easier to predict by an adversary (Catania,
2009). We can characterize deliberative behavioral control
or planning as action choices that occur after internally sim-
ulating more than one action sequence and its respective
consequences (Redish, 2016). Conversely, reactive control
is a rapid stimulus-evoked response (Haggard, 2008; Jun,
Longtin, & Maler, 2014). Our prior work on the vertebrate inva-
sion of land and its sensory consequences revealed that just
prior to moving onto land, eyes moved to the top of the head to
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Figure 1: (A) Aquatic visual scenes have low complexity due
to the high attenuation of light (MacIver et al., 2017). (B)
Aerial visual scenes have higher complexity, with larger high
frequency components (Balboa & Grzywacz, 2003). From
Nilsson, 2017, a commentary on our MacIver et al., 2017
study.

look over the water surface and tripled in size. These morpho-
logical changes coupled with the higher transparency of air
to light resulted in a nearly 100 fold increase in visual range
over the aquatic condition (Fig. 1, MacIver, Schmitz, Mugan,
Murphey, & Mobley, 2017). The increase in sensory range
allowed animals to see distant potential drivers of behavior,
such as predators or prey, and afforded long delays between
stimulus and response.

The importance of the time-to-act metric can be understood
when we consider dynamic targets, such as predators and
prey. A fish with a sensory range of approximately two body
lengths moving at a speed of one body length per second has
little time after seeing a looming predator. As a testament
to this diminutive spatiotemporal bubble, fish and amphibians
feature a bilateral pair of dedicated giant fiber neurons in their
brain, called Mauthner cells. This dedicated circuitry is re-
sponsible for creating fast, stereotypical responses to rapidly
looming stimuli (Bhattacharyya, McLean, & MacIver, 2017).
After amphibians, the Mauthner cell disappears among ver-
tebrates, indicating that its advantage was lost once animals
could see approaching threats at the much longer distances
provided by aerial vision.

Increasing the time-to-act permits (but does not necessi-
tate) the contemplation of multiple futures before acting. Such
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Figure 2: (A) Empty 15 × 15 gridworld with overlaid visual ranges tested (1, 2, or 3 grid cells ahead). The frequency of occupation
heat map for the prey (purple) is the aggregation over trials including all possible predator initial locations. (B) Survival rate as a
function of simulation depth for prey with different visual ranges acting in the empty gridworld shown in A. This is across randomly
chosen predator locations (n = 20); fill shows SEM. Monte-Carlo tree search inset shows sequences of actions taken during 1
simulation depth (e.g. simulation depth of 100 is one hundred repeats of this process). Simulation depth 102: survival rate for
visual range 2 and 3 are significantly different (Mann-Whitney U test p = 0.0041) (MWU). Simulation depth 103: survival rate
for visual range 1 and 2 are significantly different (MWU, p = 0.0086) as it is for visual range 2 and 3 (MWU, p = 0.00017) (C)
Examples of randomly generated gridworlds with varying entropy. Occlusions (black) act as walls that disrupt the predator’s line
of sight. Frequency maps show paths taken by the prey that results in its survival for that specific world. (D) Survival rate as a
function of entropy for different planning depths across random distributions of occlusions for a given entropy (n = 20 per depth);
fill is SEM. (E) Three examples of behaviors seen in one environment with 0.5 entropy (zoom of blue rectangle in C3) during
various trials. Brown line between predator and prey indicates that the predator cannot see the prey. Blue line between the
predator and prey represents prey visibility. Videos of these three examples in addition to others is available online (Mugan &
MacIver, 2018)

imagined trajectories should take into account environmental
factors such as topology and vegetation, which can occlude vi-
sion of the threat or opportunity, and the vision by the threat or
opportunity in the case of sentient targets. The effective usage
of these occlusions is dependent on: 1) knowing the target lo-
cation with respect to the occlusions, and 2) being able to view
the occlusions (perceived environmental complexity). The un-
derwater optics of the turbid ancestral aquatic habitats causes
both short range vision (MacIver et al., 2017) and low contrast
(Balboa & Grzywacz, 2003), making observations have little
directional variability (Fig. 1). Conversely, the low attenuation
of light through air enables long range vision that is rich, mak-
ing it possible for the animal to observe occlusions, such as
vegetations. Such occlusions provide a visual barrier for the
animal, making certain trajectories more favorable during ei-

ther pursuit or escape.
Here, we test the hypothesis that the selective advantage

of planning with respect to moving targets is greatly enhanced
with increased sensory range and environmental complexity.

Methods
In order to study the relationship between planning depth, vi-
sual range, and environmental complexity, we used partially
observable Markov decision processes (POMDPs). By using
POMDPs we were able to combine Markov decision process
models of animal decisions during planning (Miller, Botvinick,
& Brody, 2017; Daw, Gershman, Seymour, Dayan, & Dolan,
2011) with observations and tree-like planning systems that
rely on model-based methods. These assume a previously
learned model of the environment (Sutton & Barto, 2018).



We created a novel survival task by implementing a virtual
prey and virtual predator both acting in a 15×15 virtual grid-
world (Fig. 2A). Within this framework we equipped the prey
with a predetermined visual cone that extends outward either
1, 2, or 3 cells and faces the direction of motion. The aim of
the prey is to get to the goal position while being aggressively
pursued by the predator, which is on average 1.5× faster.
The prey uses the Monte-Carlo planning algorithm (POMCP:
(Silver & Veness, 2010)), which combines a sample-based ap-
proach to belief state update and to the tree of decisions the
prey has at each state (move left, right, forward and back-
ward). For each simulation depth the tree is expanded by ex-
actly one node.

To vary environmental complexity, we added randomly gen-
erated distributions of occlusions, calculated based on en-
tropy, to our gridworlds (Fig. 2C). These occlusions obstruct
the predator’s line of sight, hiding the prey if an occlusion
exists on the ray between the predator and the prey (e.g.,
Fig. 2E). We can analyze the complexity of the gridworld by
transforming it into a graph, and applying graph theory con-
cepts. With such a transformation, by definition a world with
no occlusions is a highly connected graph. On the other hand,
a world that is mostly occluded (high entropy) is highly discon-
nected. These two extreme examples both have low complex-
ity (Bonchev & Buck, 2005), making the peak in complexity
occur at midrange occlusion levels (around entropy=0.5).

Results
For all of the randomly generated gridworlds, each trial con-
sisted of assigning a visual range and planning depth to the
prey, and randomly selecting a predator start location. For
a low entropy, low complexity world, survival rate increases
proportionate to how much planning we allow the prey to do
before making its next move (Fig. 2B). With no planning, sur-
vival rate is zero regardless of range. When a prey with small
sensory range observes a predator, due to the differences in
their respective speed and the predator’s policy of aggressive
pursuit, the prey cannot escape. Increasing planning depth
for such prey increases survival rate only minimally. Con-
versely, for prey with long sensory ranges, survival rate rapidly
increases with respect to planning depth.

We can look at all trials in which the prey succeeded in
reaching the goal point to compute how often it occupied
each grid cell. While this varies with predator initial position,
linked cells with high occupancy frequency represent “success
paths.” The distribution of success paths for low entropy, low
complexity gridworlds reveals that there are only a few distinct
trajectories that the agent can take to increase it’s low proba-
bility of survival (Fig. 2A, C1). In these worlds planning only
provides the agent with a simple policy: 1) if the predator is
sensed, go to the wall furthest away; if not, then go to the
closest wall; 2) follow wall to the goal. (Interestingly, these
wall-following or “thigmotaxis” paths are the same that are fol-
lowed by rodents in open field tests (Simon, Dupuis, & Cos-
tentin, 1994).) Clearly, simply following this policy (rather than
planning) would lead to a similar frequency of occupation heat

map (Fig. 2A), but we have reason to believe that it would also
result in similar survival rates. We will be testing this hypothe-
sis in the near future.

Within these low entropy worlds, observation distance be-
comes more important. If the prey can see the predator from
further away it can change its direction earlier. Given these
simple environment-induced dynamics, survival rate, indepen-
dent of sensory range, is relatively low even at high planning
depths. This implies that model-free reactive control may be
more beneficial in such environments, especially when the
prey sensory range is limited. Reactive control in this case
would better utilize the resources that would otherwise be al-
located to planning.

The previous portion of our study showed that high planning
depths are only beneficial for animals with long visual ranges.
Next, we examined the effects of planning depth on survival
rate while environmental clutter (quantified by entropy) was
varied, when visual range was kept long similar to the aerial
vision condition. As expected, an increase in planning depth,
independent of entropy, increases the survival rate. However,
when planning depth is high, the survival rate increases un-
til midrange values of entropy (0.4–0.6) and then decreases
for higher entropy (> 0.6) (Fig. 2D). Considering the con-
nectivity of these worlds, in light of the definition of network
complexity mentioned above, these two ranges represent high
and low complexity environments, respectively. Moreover, as
planning depth increases, the incremental change in survival
rate with respect to entropy also increases until entropy=0.5.
These findings suggest that higher planning depths are re-
quired for the prey to strategically deploy occlusions to escape
from the predator, such as through hiding or by engaging in
diversionary tactics not unlike the broken-wing anti-predator
tactic that birds use (examples of each are shown in Fig. 2E).
While birds are diverting predators from fledglings, in cases
like the “Round-about around occlusions” example of Fig. 2E,
our agent can be interpreted as diverting the predator from
cutting off potential escape paths.

Similar to our analysis of low entropy environments, we
analyzed trajectory distributions across randomly generated
worlds with different entropies. In contrast to gridworlds with
low complexity, in gridworlds of high complexity, planning no
longer cues one or two strategies that could be easily com-
piled to habit (such as “follow the wall”). The spread of the
trajectories that lead to success in midrange entropy worlds—
signaled by their diffuse occupancy frequency maps (Fig. 2C2,
C3)—suggests that survival rate is highly dependent on the
predator location and occlusion distribution. In these worlds,
it becomes important for the agent to re-plan its trajectory af-
ter each step to take into account the changed environmental
configuration (prey, predator and occlusion locations). At high
planning depths this leads to the generation of complex be-
haviors (detailed above). It has been previously shown that
planning enables animals to quickly update their policy (Daw,
Niv, & Dayan, 2005). Our simulations indicate that the com-
plexity of the terrestrial world greeting our fish ancestors, as



revealed by their vastly different sensory ecology, could be the
origin of the need for such systems.

As entropy increases, the world becomes too occluded,
which constricts the profusion of success trajectories at
midrange entropy to one or two (Fig. 2C4). In these high en-
tropy, low complexity environments, the importance of plan-
ning is diminished, possibly allowing for reactive strategies to
succeed.

Conclusion
There is behavioral evidence for planning in birds (Clayton &
Emery, 2015) and mammals (Redish, 2016). As yet, we are
unaware of attempts to establish this capability in any verte-
brates other than birds and mammals, although it is becom-
ing clearer that other vertebrates have homologues of one of
the key structures in planning, the hippocampus (Rodriguez et
al., 2002; Elliott, Harvey-Girard, Giassi, & Maler, 2017). How-
ever, a recent survey of vertebrate brain size shows that the
brain:body mass ratio increased by a factor of 10–40 times
from fish/amphibians to birds/mammals (values for animals
with body mass over 100 g) (Yu, Karbowski, Sachdev, & Feng,
2014). It seems likely that some portion of this size differen-
tial is due to the higher selective advantage of planning and
consequent expansion of related neural structures known to
be involved, such as the hippocampus and medial pre-frontal
areas in mammals (Redish, 2016).

These early findings support the theory that a massive in-
crease in visual range with the emergence of eyes above the
water line diminished the need for reactive circuitry (such as
the Mauthner system seen in fish and amphibians), and pro-
vided selective advantage to planning. If planning originated
as an adaptive response to the change in sensory ecology
with terrestriality, then our work opens up a new domain of
research. In that domain, important questions would include
how constriction on the temporal or spatial range of prospec-
tive cognition might be due to neural circuits carrying prop-
erties of our ancestral environment. There are a number of
looming existential threats to our species, such as climate
change, that may be partially attributable to spatiotemporal
range limitations of human prospective cognition. Research
on this problem could have practical utility in raising our aware-
ness of these limitations and suggesting circumventions.
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