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Abstract— This paper uses Sequential Action Control (SAC),
a model-based method for control of non-linear systems, for
fast, optimal trajectory-tracking tasks in the presence of fluid
drift. Through the benchmark example of the kinematic car, it
is shown that SAC outperforms a traditional offline projection
- based optimization technique in terms of control effort and
objective cost. Motivated by recent work on effort-efficient,
sight-independent weakly electric fish, this papers also shows
that SAC successfully provides control-optimal dynamics to
perform short-range underwater maneuvers. Simulation results
highlight SAC’s robustness to different drift intensities and
added mass properties, even when the effective fluid drift is
not included in the controller’s model.

I. INTRODUCTION

This paper considers the problem of trajectory-tracking
optimization in underwater dynamics. To reach places that
are inaccessible to humans, underwater expeditions are exe-
cuted by autonomous underwater vehicles (AUVs) for com-
mercial, research, and rescue purposes (e.g. seabed explo-
ration, marine life observation, oil spill detection, and Naval
activities) [1]–[8]. To successfully perform these activities,
AUVs need to consider dynamics, both of the vehicle and
the surrounding fluid, and apply a series of control actions to
move. Trajectory-tracking has been studied extensively, with
respect to robustness to parameter uncertainty, disturbances,
and underactuated performance [9]–[14].

Trajectory-tracking in fluid environments has additional
difficulties. Under such conditions, AUVs face many chal-
lenges, such as limited battery power supply, low visibility,
cluttered and turbulent environments, and strong, irregular,
and unpredictable underwater drift [15]. Moreover, the fluid
environment is not easy to model and its dynamics, affected
by water pressure and drift, constantly change as robotic
vehicles maneuver to different depths, and in and out of water
currents. In general, underwater trajectory-tracking involves
Navier-Stokes modeling with boundary conditions that are
coupled with the vehicle motion; a very challenging problem
requiring approximations for any real-time control approach
[16]. The aforementioned issues of underwater tasks can
destabilize optimization schemes that either do not run in
real time or rely heavily on knowing the exact environmental
parameters. Aside from flexibility in the model, successfully
optimizing underwater movement requires algorithms that
run on-line in order to respond to unexpected changes, as
well as to incorporate feedback and apply optimal corrective
actions. An algorithm with these traits is Sequential Action
Control [17], [18].

SAC is an on-line, closed-loop predictive optimization
control algorithm for non-linear systems. Unlike other op-

timization schemes that iteratively calculate optimal control
actions, it computes an analytical closed-form expression
for controls at each instant that best improve the stated
objective. SAC’s solutions have been shown to optimally
improve a tracking objective with low execution time and
minimal control effort [17]. Reference to optimal SAC
controls throughout the paper is meant with respect to the
time evolution of the objective function, unlike traditional
optimal control methods that directly minimize the objective.
Because of these traits, the SAC algorithm can be used
to efficiently react to unexpected changes that may occur
underwater and provide robustness to parameter variation,
while also preserving control effort.

This paper expands the studies on SAC in the context of
nonlinear dynamics of an underwater robot; it investigates the
algorithm’s performance and its robustness to different values
of drift intensities and directions [17], [19], [20]. The authors
first consider the kinematic car system with environmental
drift. Simulations on the benchmark problem of the kine-
matic car illustrate that the performance of SAC is largely
unaffected in the presence of velocity drift. SAC trajectories
are compared to trajectories computed with a projection-
based optimization scheme [21]; simulation results indicate
that SAC produces comparable trajectories using less control
effort and resulting in better objective cost.

The algorithm is further tested on a model with the
kinematic car dynamics and the added mass parameters of
the weakly electric fish, which has been shown to maneuver
efficiently [22]. This system is referred to as the dynamic
fish-robot throughout the paper. The algorithm’s performance
on short-range prey-catching scenarios using the animal’s
dynamics is near-optimal. Given that the fish maneuvers with
minimal effort, this result could be of special importance
to research inspired by the weakly fish and other systems
to minimize power consumption without sacrificing perfor-
mance. The primary contribution of this paper is showing
that SAC is a suitable candidate that can directly address
the aforementioned difficulties of trajectory-tracking in fluid
environments.

The paper structure is as follows: Section II introduces
the SAC algorithm and explains its benefits. Section III
presents the application of SAC on the kinematic car and
dynamic fish-robot systems and comments on the algorithm
performance. Section IV summarizes the findings and reveals
ideas for future work.



II. SEQUENTIAL ACTION CONTROL

Sequential Action Control is a closed-loop control algo-
rithm that, in real-time, continuously computes a sequence of
optimal infinitesimal controls and application times. During
each cycle, SAC forward simulates the dynamics of the
system along a user-specified time horizon T and analytically
solves for the optimal infinitesimal control as a function of
time. It then uses first-order sensitivity of the cost function
to infinitesimal applications of the calculated control (called
the mode insertion gradient in the hybrid systems literature
[23], [24]) in order to determine the best time to act, i.e. the
time at which the computed control would reduce the cost
function the most. An overview of the SAC algorithm is
presented next; for a complete description of the algorithm,
refer to Reference [17].

Given dynamics

~̇x(t) = ~g(t, ~x(t)) +H(t, ~x(t)) · ~u ∀t, (1)

that are non-linear in state ~x : R 7→ Rn×1 and linear
in control ~u : R 7→ Rm×1, SAC sequentially calculates
infinitesimal control actions that are optimal with respect
to decreasing at a specified rate αd, not minimizing, a cost
function of the form

J1 =

∫ tf

to

l1(t, ~x(t), ~u(t))dt+m(~x(tf )). (2)

For tracking-objectives, the cost function takes the form

J1 =
1

2

∫ tf

to

‖~x(t)−~xd(t)‖2Qdt+
1

2
‖~x(tf )−~xd(tf )‖2P1

, (3)

where ~xd is the desired state-trajectory, and Q = QT ≥ 0,
P1 = PT1 ≥ 0 are metrics on state error.

SAC considers two control-modes, u1(t) – fixed (typically
zero) control – and u2(t), associated with default and opti-
mal dynamics ~f1 and ~f2, respectively. Over the course of
each horizon [to, tf ], SAC injects optimal dynamics ~f2 for
infinitesimal duration. That is, the algorithm switches from
the default mode ~f1 to the optimal action mode ~f2 and back
to ~f1. The optimal infinitesimal control ~u2(t) at each time
t has an analytical expression that minimizes the control
magnitude and the mode insertion gradient to an infinitesimal
application of ~f2 dynamics

u∗2(t) = min
u2(t)

1

2
(
dJ1

dλ+i
− αd)2 +

1

2
‖u2(t)‖2R, (4)

where αd ∈ R− expresses a minimum (desired) sensitivity
and R is a metric on control effort. The analytical solution
of equation (4) is

u∗2(t) = (Λ +RT )−1[Λ~u1 +HT ~ραd], (5)

where Λ
M
= HT ~ρ ~ρTH , and ~ρ : R 7→ Rn×1 is the adjoint

(co-state) variable, given by:

~̇ρ = −D~xl1(t, ~x, ~u1)T −D~x ~f(~x, ~u1)T ~ρ (6a)

~ρ(tf ) = −D~xm(~x(tf ))T . (6b)

The optimal control curve u∗2(t) returns the optimal control
value as a function of time and enables SAC to compute the
most effective time to act, i.e., one that minimizes a) control
effort, b) the first-order sensitivity of the cost function to
applications of ~f2, and c) the cost of waiting:

τm = min
t
‖u2(t)‖+

dJ1

dλ+i
+ (t− to)β . (7)

Last, SAC considers finite controls that could improve
the objective more than infinitesimal actions. Starting with
an initial finite duration λ centered at τm, SAC iteratively
reduces the duration via a backtracking line search until the
objective improvement is above a specified value. SAC con-
trols exist and are unique, as they are solutions to Tikhonov
regularization problems [17]. The algorithm successively,
every ts seconds (sequencing rate), performs the set of
computations presented in Algorithm 1.

Algorithm 1 Sequential Action Control

• Simulate dynamics ~f1 for t ∈ (tcurr, tcurr + T )1

• Compute initial tracking cost Jinit,i from equation (2)
• Analytically compute optimal control curve ~u∗2(t)i
• Search for optimal time τm,i to enact infinitesimal

control ~u2(τm,i) from equation (7)
• Saturate control
• Perform Line Search to specify control duration λi,

centered at τm,i : (τm,i − λi

2 , τm,i + λi

2 ).

The results in [17] show that SAC is promising for on-line
optimization problems. Additionally, SAC is computationally
very efficient, as it computes an analytical solution to a non-
linear optimal control problem. As a result, it avoids the large
computational cost involved in solving the n×n+n

2 Riccati
differential equations used by open-loop optimal control
approaches for Rn-state systems. Further, it readily imposes
control constraints, and can avoid local solutions at which
SQP algorithms stop prematurely (see [17]).

The computational cost for systems with multidimensional
state and control space renders some optimization methods
too slow to incorporate feedback and perform in real time.
The speed of the algorithm and its ability to scale better
with respect to state and control dimensions are the reasons
to consider SAC appropriate for real-time applications.

III. APPLICATION TO SYSTEMS WITH DRIFT
In this section, we investigate applications of SAC on

systems with drift. The goal is to illustrate the algorithm’s
ability to track trajectories:

– in non-dynamic/fluid environments
– underwater, in the presence of drift
– using dynamics with added mass in fluid.

The systems we consider are the 2D model of the kinematic
car and an underwater model with the same dynamics and
added mass parameters from the electric fish (dynamic fish-
robot). These examples showcase SAC’s general ability to

1tcurr = i× ts
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Fig. 1. A parametric plot of SAC-computed trajectories on tracking
the desired trajectory (dotted line) using the kinematic car dynamics
at a control sequencing frequency of 20 Hz. The performance of the
control is tested against no drift and drift of -1 m/s x̂. Although the
time horizon used for the simulations is extremely short (T = 1 s),
the performance of SAC remains largely unaffected by the presence
of flow.

track trajectories in environments with fluid flow and, more
specifically, control the kinematics of the actual systems.
The kinematic model of the car tests the general trajectory -
tracking ability of SAC in fluid environments. Application
on the dynamic fish-robot serves as a stepping stone for
ultimately testing SAC on a robotic fish system [25], [26].

Both examples present the same trajectory - tracking task
with and without fluid drift. The results of the two cases are
compared to show the effect of fluid environments on SAC.
Underwater dynamics are simplified to constant fluid velocity
drift in the system’s state. To model the effect of drift,
different intensities of fluid flow are used in both systems.

A. Kinematic Car

The kinematic car is a well studied example often used in
the literature to measure tracking performance of optimiza-
tion algorithms [27]–[29]. In this subsection, SAC is tested
on the 2D underactuated model of the kinematic car with
state ~q = (x, y, v, θ, θ̇)T , where v is the forward velocity of
the car in the body frame, and control input ~u = (uD, uT )T

– drive and turn, respectively. The dynamics are modeled as

~f(~x, ~u) =


v · cosθ + ẋw
v · sinθ + ẏw
uD − η1 · v

θ̇

uT − η2 · θ̇

 , (8)

where ẋw and ẏw represents the fluid drift in the x- and
y- world frame axes and η1 = 0.01 1/s and η2 = 0.03 1/s
represent linear and rotational damping coefficients. In this
example, SAC is applied to track the following desired
trajectory:

~qd = (5 · sin t
4
, 5 · sin t

2
, 0,

π

2
, 0)T . (9)
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Fig. 2. The SAC algorithm tests the kinematic car system on
tracking the reference (gray) signal in two ways. On the first (blue)
run, SAC is tested in a non-fluid environment and on the second
run (red) in a fluid environment with -1 m/s x̂ flow. The simulation
uses non-fluid dynamics (absence of drift effects) in both cases–that
is, the controller does not know there is fluid drift on the second
run. Dotted lines show the x-coordinates and solid ones the y- ones.
The reference signal is marked with gray, the neutral-environment
test with blue and the underwater one with red.

The parameters used in the simulations are ts = 0.05 s (20
Hz rate), T = 1 s, Q = Diag[100, 100, 1/1000, 0, 1/100],
P1 = Diag[0, 0, 0, 0, 0], R = Diag[10−8, 10−8], ẋw = -
1.0 m/s, ẏw = 0. The system starts from initial conditions
~q0 = (0, 0, 0, 0, 0)T and the control remains constrained
within the following limits: (uD ∈ [−10,+10] m/s2,
uT ∈ [−30,+30] rad/s2).

The results of the simulation are presented in Fig. 1.
The kinematic car stays within a couple centimeters of
the desired trajectory, both in the absence and presence of
fluid drift. In this benchmark example, fluid drift does not
have a significant effect on tracking performance, despite
the short time horizon used. Even though fluid dynamics
have been simplified with constant velocity drift, SAC stays
largely unaffected in its performance and is able to turn and
drive the car to follow this changing track. The algorithm is
also compared to a projection-based trajectory optimization
method on the task of reaching a nearby location. As Fig.
3 shows, SAC is able to decrease the objective (distance to
the target) with less control and better final error, despite the
saturation limits applied on control.

The ability of SAC to perform well with fluid drift inspired
further work. Specifically, the authors tested whether SAC
could apply optimal corrective control, without knowledge
of the existing drift effects. In simulation, SAC is tested in
the context of two dynamics, the non-fluid ~fnf and the fluid
~freal. Dynamics ~fnf are the dynamics of the car ~f in the
absence of drift (ẋ = ẏ = 0), whereas dynamics ~freal are the
actual dynamics of the environment (ẋ = −1.0 m/s, ẏ = 0).
In this way, SAC performs its computations, and applies
control using ~fnf . The actual progression of the system
states, however, occurs using ~freal and the control that is



(a) Tracking error performance of SAC and Trajectory
Optimization on the task of reaching a stationary nearby target.

(b) Controls produced by SAC and Trajectory Optimization on the
task of reaching a stationary nearby target.

Fig. 3. SAC and the projection-based trajectory optimization scheme are tested on reaching a nearby target at (x,y) = (5 m, 5 m), starting
from ~q0 = ~0 and using the kinematic car dynamics in the presence of a -1.0 m/s x̂ drift. As shown in the left figure, SAC satisfies
saturation limits and exhibits better station keeping performance by remaining closer to the target (zoomed image). SAC outperforms
Trajectory Optimization also in terms of the control efforts, which are measured by integrating control actions over application time:∫ tf
t0
u(t)dt. Throughout the ten seconds of simulation, SAC uses 26.71 m/s2· s and Trajectory Optimization uses 41.35 m/s2· s. After

the first two seconds, the integrated errors are 26.3 cm and 65.6 cm and the controls used are 3.63 m/s2· s and 4.41 m/s2· s for SAC
and Trajectory Optimization, respectively. Control saturations used in SAC keep controls below 10 m/s2, better resembling experimental
actuation constraints.

computed for ~fnf . The results presented in Fig. 2 show
that SAC performance does not significantly deteriorate
“underwater” without knowledge of the true fluid dynamics.
The controller tracks the desired y-state accurately, while
the x-state is only slightly off throughout the simulation. As
the figure shows, the car oscillates back and forth over the
reference target in the non-fluid test (blue curves) due to
control overshoot. This effect arises because of the very short
time horizon that does not allow the controller to know the
desired trajectory well in advance. A second simulation with
twice the time horizon duration (T = 2 s) showed reductions
in the oscillations around these reference x-state. Yet the
results of Fig. 2 describe a more realistic scenario, in which
the controller has limited information about the controller’s
future motion and becomes more reactive than predictive.

B. Dynamic Fish-Robot

Through the benchmark example of the kinematic car,
SAC is shown to be capable of trajectory - tracking in the
presence of fluid drift, whether or not it has any knowledge
of the actual fluid dynamics. Its computational speed and
robustness (evident in the results presented) are reasons to
believe SAC can appropriately control underwater vehicles in
real-time. Fish in general, and the weakly electric fish more
specifically, are promising candidate system for underwater
dynamical models in cluttered, dirty environments [22], [25],
[30]–[32]. For this reason, this is the second system on which
SAC is tested.

The weakly electric fish black ghost knifefish Apteronotus
albifrons lives in dirty, turbulent waters and provides science
with an example of optimal underwater motion [22], [31].

Its ability to navigate has already been studied and shown
to be optimal in prey-tracking scenarios [22], providing a
potentially useful design model for future AUVs.

Its ability to navigate in turbid water sensing by way of a
self-generated electric field drew the attention of the scien-
tific world which saw a model of how to extend underwater
expeditions to low-visibility areas. As described in [33] and
[34], the weakly electric fish use active electrosense to map
its surroundings and catch its prey. It continually generates
an oscillating electric field and, through thousands of electric
sensors placed throughout its body, can sense the presence
of objects around it. Objects that do not share the same
conductivity as water and perturb the self-generated electric
field of the fish cause voltage changes at the sensors that are
processed by the animal.

The dynamics of the underactuated electric fish are derived
from Euler-Lagrange (EL) equations equivalent to Kirch-
hoff’s equations [22]. With state ~q = (x, y, θ, ẋ, ẏ, θ̇)T ex-
pressed in the world frame, and control input ~u = (uD, uT )T

– drive and turn, respectively – in the body frame, the model
incorporates damping and control input in the body - frame
and fluid drift in the world frame. Specifically, the fish is
modeled as a rigid body with a generalized inertia matrix
I = Diag[m1,m2,m3, j1, j2, j3] and body-frame velocity Vb
given in terms of Gwb(x, y, θ) (the transformation from the
world to the body - frame) and R(θ) (the rotation matrix):2

Vb = (G−1wb · Ġwb)
∨ =

(
RT ṗ
ω

)
, (10a)

2The ∨ operation on a 4x4 matrix is defined as G∨ =
(G14, G24, G34, G32, G13, G21), with Gij defining the element of G in
the i-th row, j-th column; ṗ = (ẋ, ẏ, ż)T .



(a) A success/failure map of nearby targets for the dynamic
fish-robot. All targets are successfully reached within ten seconds
of simulation time.

(b) Target locations are color-coded based on the simulation time it
takes the dynamic robot-fish to reach them. Targets lying ahead (+x̂)
or behind (-x̂) the system are reached the fastest. The asymmetry
around the y-axis origin is due to the +0.1 m/s ŷ drift.

Fig. 4. A map of target locations posed to the dynamic robot-fish system in the presence of +0.1 m/s ŷ drift. Two hundred targets are
randomly generated from a sample space of (x, y) = (1 m, 1 m) using Monte Carlo sampling. Success is defined by whether the robot-fish,
always starting from an initial state of ~q0 = ~0, is at the end of the simulaton (10 seconds) within 2 cm of the target, equal to half the
longest dimension of the electric fish [22]. The only concern of the task is to approach the nearby targets and so zero weight is applied
on the orientation θ of the system.

R(θ) =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 , (10b)

Gwb(x, y, θ) =


. . . x

R y
. . . 0

0 0 0 1

 . (10c)

The generalized inertia matrix I uses information about
the physical limitations of motion and restorative forces in
underwater environment. Parameters m1,m2,m3 describe
the added mass matrix (due to the volume of fluid accel-
erated by translations of the fish) and parameters j1, j2, j3
refer to the added moment of inertia matrix (due to the
volume of fluid accelerated by rotations). The values used
are (m1,m2,m3) = (6.04, 17.31, 8.39) g, (j1, j2, j3) =
(1.57, 27.78, 54.11) g cm2 found in [22].

Assuming the body lies on a 2D plane, its potential energy
(PE) is constant and its KE = 1

2V
T
b IVb (invariant across

transformations). The Lagrangian of the system is L , KE
- PE, the EL differential equations are:

∂L

∂qi
− d

dt

∂L

∂q̇i
= Fext, for i = 1, 2, 3, (11a)

Fext = R(θ) ·

uD +D1

D2

uT +D3

 , (11b)

where D1, D2, D3 are the damping forces. The rotation ma-
trix in equation (11) is used to convert the forces of damping
and control in the body-frame. Solving equation (11) yields
ẍ, ÿ, θ̈. Water drift ẋw, ẏw is added to the measured state -
velocities ẋ, ẏ.

First, SAC is tested on reaching nearby targets in the
presence of +0.1 m/s ŷ drift. The results, presented in Fig.
4, show that SAC reaches all randomized targets. These
results highlight the maneuverability of the dynamic robot-
fish dynamics, which SAC can efficiently handle. The pa-
rameters used in the simulation are ts = 0.05 s, T = 1 s,
Q = Diag[1000, 1000, 0, 0.01, 0.01, 0.01], P1 = Diag[10000,
10000, 0, 1, 1, 1], R = Diag[10−3, 10−6]. SAC is further
applied on tracking the following desired trajectory for 20
seconds, with and without flow:

~qd = (0.2 · cos[ t
4
− π

2
], 0.2 + 0.2 · sin[

t

4
− π

2
], 0, 0, 0, 0)T .

(12)
Starting from ~q0 = (0, 0, 0, 0, 0, 0)T , SAC uses
ts = 0.05 s, T = 1 s, Q = Diag[1000, 1000, 0,
0.01, 0.01, 0.01], P1 = Diag[10000, 10000, 0, 1, 1, 1],
R = Diag[10−3, 10−6], and saturation constraints of 1 N
on both control inputs. Simulation results are presented in
Fig. 5. Not only does SAC successfully track the desired
trajectory using the electric fish dynamics, but it also does
reasonably well in the presence of fluid drift. The resulting
underwater motion (with drift) is less smooth compared to
the motion without drift, but is not worse in terms of the
objective which is tracking the reference signal. Last, SAC
is tested on the following trajectory - tracking task for a set
of different fluid flow direction and intensities:

~qd = (0.2 · sin t
4
, 0.2 · sin t

2
, 0, 0, 0, 0)T . (13)

Results are presented in Fig. 6 and show that SAC’s ability
to track the desired trajectory is robust to different fluid
intensities. While these simulation results cannot guarantee
SAC’s success tracking trajectories underwater in general,



(a) A parametric plot of SAC-produced trajectories (b) Tracking error in the x-y states

Fig. 5. SAC is applied on the dynamic fish-robot model to track the desired trajectory at a control sequencing frequency of 20 Hz. The
performance of the controller is tested against no drift and drift of +0.1 m/s ŷ. The computed trajectories are plotted against the reference
signal. Although the time horizon used for the simulations is extremely short (T = 1 s), the performance of SAC remains largely unaffected
by the presence of flow.
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(a) Tracking error throughout simulation. The white region
corresponds to large errors, not visible in the bar legend.
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(b) Steady-state tracking error, as measured after the first five seconds
of simulation.

Fig. 6. A contour plot on the effect of fluid drift intensity on trajectory - tracking performance for the dynamic system. The maps plot
performance error as a function of fluid drift intensity (in both the x- and y- direction) and are generated from interpolating data for drift
∈ (-0.15, 0.15) m/s sampled in steps of 0.05 m/s. Performance error is calculated as the integrated distance (in m) away from the desired
trajectory throughout the simulation period (20 seconds). The majority of the error occurs in the first five seconds, until the controller
catches up with the target. The right figure shows the error between 5-20 seconds. The desired trajectory is provided in 13 and has a total
arc length of 1.52 m over the simulation period.

they suggest that SAC can be used for underwater tracking
using the model of the knifefish and provides a promising
basis for further exploration.

IV. CONCLUSIONS AND FUTURE WORK

This paper presents the ability of SAC to perform
trajectory-tracking tasks in the presence of fluid drift. Be-
cause underwater environments are difficult to model accu-
rately, several optimization schemes involve approximations
in their models. Due to being offline or having a high compu-
tational cost, such schemes do not seem good candidates for
real-time problems. On the other hand, the application results
of this paper show SAC to be a control-efficient solution that

is robust to fluid drift intensities, without sacrificing tracking
performance. Hence, SAC seems a reasonable alternative for
underwater trajectory-tracking.

The application tests in this paper provide only a limited
number of investigated cases. Further, both the model of
the kinematic car and the dynamic fish-robot avoid the
complexity of three-dimensional navigation. Such concerns
are the focus of future work.
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