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Abstract— This paper presents a framework for planning the
motion of an n-fingered robot hand to create an inertial load on
a grasped object to achieve a desired in-grasp sliding motion.
The model of the sliding dynamics is based on a soft-finger
limit surface contact model at each fingertip. The framework
is applied to the problem of regrasping a block held in a pinch
grasp. The approach is applied to two examples in simulation,
one of which is tested experimentally.

I. INTRODUCTION

A. Background

Most human, animal, and even robot manipulation tasks
involve controlling motion of the object relative to the manip-
ulator, particularly in nonprehensile (graspless) manipulation
modes such as pushing, rolling, pivoting, tipping, tapping,
and kicking. Even in pick-carry-place manipulation, where
the carry portion of the task keeps the object stationary
relative to the hand, the pick and place phases typically
involve the object sliding or rolling on the fingers as the hand
achieves a firm grasp or lets the object go. Other examples of
controlled relative motion in grasping manipulation include
finger gaiting, where the fingers quasistatically walk over
the object to achieve a regrasp, all the while maintaining a
stable grasp; rolling the object on the fingertips; and letting
the object slide relative to the fingertips. Together these may
be referred to as in-hand manipulation.

We are studying controlled sliding in a grasp for three
purposes:

1) Error-corrective sliding in an assembly task. The prob-
lem is to choose a grasp configuration satisfying force-
closure constraints as well as providing error-corrective slid-
ing motion in response to likely disturbance forces during
the place operation. For example, uncertainty in a peg-in-
hole assembly task results in contact forces that should be
mapped to error-corrective motion, such as using the springs
of the RCC device [1] or using active accommodation control
[2]. Instead, it is possible to use sliding at the fingertips as
the source of compliance. By the choice of finger locations
and normal forces, we can control the shape of the grasp
limit surface (Sections II and V), which governs the mapping
from contact forces to sliding directions, much like an
accommodation control law maps contact forces to corrective
velocities.
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2) Regrasping using external contacts. In the previous task,
the goal is to achieve a desired object configuration relative to
external fixtures. In this task, the goal is to achieve a desired
object configuration relative to the hand. Contact with the
environment is used to provide forces that cause the object
to slide relative to the fingers to a desired new grasping
configuration. A manually designed example of this can be
found in [3].

3) Regrasping using dynamic loads. In the previous task,
the forces to cause the regrasp come from contact. In this
task, the hand uses inertial forces on the object to cause it
to slide to the desired new grasp by accelerating the hand
beyond what the finger friction forces can support.

This paper focuses on the last problem: accelerating
the hand to achieve a desired regrasp. Our testbed is the
ERIN robot manipulation system, which consists of a 7-
DOF Barrett WAM robot arm, a four-fingered Allegro robot
hand outfitted with four SynTouch BioTac tactile sensing
fingertips, and a 10-camera high-speed OptiTrack vision
system as shown in Fig. 9 (a). Assuming the fingers are
compliantly mounted, and the initial grasp configuration is
chosen, research topics include:

1) given the state of the hand/object, the contact normal
forces, and the acceleration of the hand, find the
relative acceleration of the object (forward dynamics);

2) given the state of the hand and object and the desired
relative acceleration of the object, find appropriate
hand accelerations and contact normal forces (inverse
dynamics);

3) planning the hand motion (and possibly contact normal
forces) to achieve a desired regrasp;

4) iterating planning and execution of hand motions to
iteratively reduce grasp error; and

5) real-time feedback control of hand motion and finger
normal forces during sliding motion to achieve the
desired regrasp;

6) estimation of friction properties from observed object
motions, given the motion of the hand and the contact
normal forces.

In this preliminary study, we use a simple unactuated hand in
place of the Allegro hand and tactile sensors, and we focus on
items 1)–4) above with constant normal force. In particular,
we focus on the case of planar motion, where the object
moves with three degrees of freedom (two translational and
one rotational) and the fingers grasp the object on opposite
sides that are parallel to the plane of motion. Friction
property estimation and feedback control is out of the scope
of this paper and will be addressed in future work.



B. Statement of Contributions

1) We have developed a framework for iterative planning
of dynamic in-hand sliding for n-fingered planar re-
grasps.

2) We provide solutions to the forward and inverse dy-
namics problems using soft-finger contact models.

3) We have validated the approach with simulations and
preliminary experiments.

C. Paper Outline

Section II reviews previous work on which this paper
builds. In Section III we solve problems 1)–4) for a simple
1-DOF example. In Section IV we generalize the problem
for an n-fingered grasp moving in a plane. In Section V
we discuss the limit surface model for friction and derive
expressions for the frictional force given a relative velocity
between a rigid object and soft-finger contacts. In Section
VI we derive the sliding dynamics and outline a method
to calculate the acceleration of the object relative to each
finger given the accelerations of the fingers. In Section VII
we address the problem of planning the finger motion that
achieves a desired regrasp for a given n-fingered grasp. In
Section VIII we apply the motion planning approach to
two example problems in simulation and we experimentally
validate the results of one of the examples in Section IX.

II. RELATED WORK

A. In-hand Manipulation

There has been extensive work on kinematic in-hand
manipulation where an object is moved relative to a finger
without breaking contact or sliding on the surface. Trinkle
and Hunter [4] extended the dexterous manipulation planning
problem to consider rolling and slipping contact modes. The
hybrid planning problem was further developed by Yashima
et al. [5].

In-hand sliding manipulation can also be used to quickly
reposition the object in the hand. Traditional dexterous
regrasp methods such as finger gaiting or “place” and “pick”
may be slow or not possible given the number of fingers or
the surrounding environment. Brock addressed the problem
of controlled sliding by first generating a constraint state
map which outlines constraints on a grasped object due to
the contact types and forces. By varying the contact forces he
achieved controlled sliding in desired directions for a grasped
cylinder [6].

Dynamic forces can also be used for in-hand manipula-
tion. Furukawa et al. demonstrated regrasping by tossing a
foam cylinder up and catching it [7]. Chavan-Dafle et al.
tested hand-coded regrasps that take advantage of external
forces such as gravity, dynamic forces, and contact with the
environment to regrasp objects using a simple manipulator
[3].

Arisumi et al. have explored the idea of casting manip-
ulation where a manipulator is thrown and its “free flight”
trajectory can be controlled in midair using tension forces
in a tether [8]. Similarly, dynamic in-hand sliding motions
allow the manipulator to impart forces on the object during

motion. This allows for feedback control and the ability to
quickly and easily regrasp the object at any point throughout
the trajectory.

B. Friction Modeling

Goyal et al. [9] describe the concept of a limit surface as a
two-dimensional surface in a local three-dimensional force-
moment space. The limit surface defines the set of external
wrenches that can be resisted by the frictional forces due
to the contact. Xydas and Kao [10] derived models of soft-
finger contacts and the resulting limit surfaces.

III. 1-DOF EXAMPLE

In this section we solve research topics 1)–4) from the
introduction for a simple 1-DOF example.

For the 1-DOF case we have an object that can be accel-
erated in the positive or negative direction due to frictional
contact with a single finger. Based on a Coulomb friction
coefficient of µ and a normal force fN , the finger can resist a
tangential force of µfN before sliding. We assume the object
has unit mass, so the maximum object acceleration is ao =
µfN . We also assume the finger has a maximum acceleration
of af > ao. Additionally we define a finger acceleration a
greater than 0 but less than ao. The relationship between the
accelerations can be written as af > ao > a > 0.

Let qf (0) = qo(0) = 0 be the initial position of the finger
and the object, and let dc(t) = qf (t) − qo(t) be the finger
position relative to the object position at time t. The problem
is to choose a finger acceleration profile q̈f : [0, T ] → R to
cause the object to slide relative to the finger by dgoal at time
T , i.e., dc(T ) = qf (T )− qo(T ) = dgoal.

A. Forward Dynamics

The forward dynamics problem is to determine the relative
sliding acceleration d̈c when given a finger acceleration q̈f . If
ḋc 6= 0, then d̈c = q̈f − sgn(ḋc)ao. If ḋc = 0 and |q̈f | ≤ a0,
then no sliding will occur. If ḋc = 0 and |q̈f | > a0, then
d̈c = q̈f − sgn(q̈f )a0.

B. Inverse Dynamics

The inverse problem is to determine the finger acceleration
q̈f that achieves a desired relative sliding acceleration d̈c. If
ḋc = d̈c = 0, no slip occurs so any |q̈f | ≤ ao is valid. If
ḋc = 0 and |d̈c| > 0, then q̈f = d̈c + sgn(d̈c)a0. If ḋc 6= 0,
then q̈f = d̈c + sgn(ḋc)ao.

C. Motion Planning

We assume the finger and object are initially at rest. We
also require that the finger’s net displacement and velocity
after the motion be zero. To achieve the sliding regrasp while
satisfying these constraints, we first accelerate the finger with
q̈f = a for time T1. We then apply the maximum negative
acceleration q̈f = −af for time T2. Next we apply q̈f = a for
time T3 + T4 = T34. To achieve zero final displacement and
velocity for the finger, we choose T1 = T34 and q̇f (T1) =
−q̇f (T1 + T2).

During T1, ḋc is zero and |q̈f | ≤ ao so no relative motion
occurs. During T2, q̈f < −ao so relative sliding occurs.



μ fn = ao

t0

sticking

μ fn = ao

a

t0

faac
ce

le
ra

tio
n

ve
lo

ci
ty

t
0

po
si

tio
n

1T 2T 3T 4T

sliding sticking

sliding 
distance

1T

1aT

1aT

Fig. 1. A plot of the system motion profile of the 1-DOF problem. The
blue curves represent the motion of the finger and the dashed red curves
represent the motion of the object. The object has unit mass. In the velocity
profile, the orange shaded area is the relative sliding distance.

During T3, |q̈f | ≤ ao but ḋc 6= 0 so sliding still occurs
until ḋc → 0. During T4, the object is sticking and ḋc is
zero. Based on this analysis we assume three phases for each
regrasp: an initial sticking phase (T1), an intermediate sliding
phase (T23 = T2 +T3), and a final sticking phase (T4). The
total time can be written as T = T1 +T2 +T3 +T4. The full
series of accelerations, resulting velocities, and positions is
shown in Fig. 1.

The total relative sliding distance dgoal is the integral
between the finger and object velocity curves in the sliding
phase. With given values of af , ao, a and dgoal, we solve the
following constraints to find the durations T1, T2, and T3:

2aT1 = afT2, (1)

ao(T2 + T3) = a(2T1 − T3), (2)

dgoal = −0.5(af − ao)(T 2
2 + T2T3). (3)

Eq. (1) describes the finger velocity at time T1 + T2 by
the symmetry assumption. Eq. (2) shows the object and
finger velocities are equal at time T1 + T2 + T3. Eq. (3)
is the expression of the sliding distance. We can write the
expressions for T1, T2, T3 by solving (1), (2), (3) as

T1 =
af
a

√
−dgoal(a+ ao)

2(a+ af )(af − ao)
,

T2 =

√
−2dgoal(a+ ao)

(a+ af )(af − ao)
, T3 =

√
−2dgoal(af − ao)
(a+ af )(a+ ao)

.

(4)

D. Iterative Error Reduction

Following the execution of a planned repositioning tra-
jectory, there will be some error in the actual relative
displacement. This could be caused by inaccurate parameters,
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Fig. 2. The friction uncertainty affects the sliding distance. We denote
d1, d2, d3, d4 as the areas of different triangles and d1 + d2 = d3 + d4 =
dgoal. The areas d2 and d3 show the uncertainty in the sliding distance.
Area d2 represents the error when the friction coefficient is underestimated,
and d3 represents the overestimated case.

trajectory tracking error, or unmodeled dynamics. A signif-
icant source of error is an incorrect estimate of the friction
coefficient µ. The following theorem shows that iterated
execution of motion plans based on updated displacement
information is sufficient to bring the object to the desired
goal position dgoal in the presence of significant uncertainty
in the friction coefficient.

Theorem 1: Consider the 1-DOF sliding regrasp system
with a desired net sliding distance dgoal, a known constant
normal force fN , an estimated friction coefficient µ0, and an
actual (unknown) constant friction coefficient µ ∈ [µ0(1 −
ε), µ0(1+ε)] for a friction coefficient uncertainty ε > 0. Then
by iterating the finger motion described above (where dgoal is
recalculated at each iteration based on sensor data), the error
in the net sliding distance converges asymptotically to zero
with respect to the iterations provided a < µ0fN (1−ε), af >

µ0fN (1 + ε), and af >
fNµ0 (a(1 + ε) + (1− ε)fNµ0)

a+ (1− 2ε)fNµ0
.

Proof: Without loss of generality, we prove the theorem
for the case dgoal < 0, as indicated in Figure 2. With
friction uncertainty included, the friction coefficient is µ ∈
[µ0(1−ε), µ0(1+ε)]. The object acceleration can therefore
be written as ao,actual ∈ [ao−aε, ao+aε], where ao = µ0fN
and aε = µ0fNε.

The sticking constraint in T1 and T4 is satisfied by the
first condition a < µ0fN (1 − ε). The second condition,
af > µ0fN (1+ε), ensures that the object slides during the T2
portion of the finger motion. The third condition ensures that
the finger acceleration is large enough so that the object will
not slide greater than 2dgoal during the sliding phase. When
the friction coefficient is underestimated, the maximum slid-
ing distance error caused by the friction uncertainty is the
area of the orange triangle d2 in Fig. 2, and can be expressed
as:
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Fig. 3. Side view of an object in a two-fingered pinch grasp. {w} represents
the world frame, {b} represents the body frame of the object, and {fi}
represents the finger frame. The variables are defined in Section IV.

d2 =
−0.5aε(a+ af )(T 2

2 + T2T3)

a+ ao + aε
. (5)

For the case where the friction coefficient is overestimated,
the maximum sliding distance error is the area of the green
triangle d3 in Fig. 2, and can be expressed as

d3 =
−0.5aε(a+ af )(T 2

2 + T2T3)

a+ ao − aε
. (6)

The range of the actual sliding distance can be written as
dactual ∈ [dgoal − d2, dgoal + d3], and the error in sliding
distance as e = dgoal − dactual ∈ [d2,−d3].

At each time step, the error e from the previous motion
becomes the new dgoal and is used to replan a sliding motion.
This is given as:

(dgoal)i+1 = (dgoal)i − (dactual)i ∈ [(d2)i , (−d3)i]. (7)

From (3) and (5), when af > µ0fN (1 + ε) we have

‖(d2)i‖
‖(dgoal)i‖

< 1, (8)

and from (3) and (6), when af > fNµ0(a(1+ε)+(1−ε)fNµ0)
a+(1−2ε)fNµ0

we have
‖(d3)i‖
‖(dgoal)i‖

< 1. (9)

By combining (7)-(9) we have
∥∥∥ (dgoal)i+1

(dgoal)i

∥∥∥ < 1. Let ki =∥∥∥ (dgoal)i+1

(dgoal)i

∥∥∥, so ki ∈ [0, 1), and we can rewrite (7) as

‖(dgoal)i+1‖ ∈ [−ki ‖(dgoal)i‖ , ki ‖(dgoal)i‖],

which demonstrates that dgoal converges asymptotically to
zero as the number of iterations increases.

IV. GENERAL PROBLEM STATEMENT

In this section we generalize the in-hand manipulation
problem outlined in Section III for an n-fingered grasp, and
define notation used in the rest of the paper.

We assume the object is held by n soft-finger contacts
which are located on opposite sides of a laminar part moving
in a vertical 2D plane. The sum of the normal forces at
each contact must satisfy force balance at all instances so
the object remains in the plane. We have controls on the
acceleration of each finger, and the external forces to achieve
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Fig. 4. Ellipsoid shape limit surface. Axes fx, and fy represent the
tangential friction force and mz represents the moment caused by the soft-
finger contact. The sliding direction ∆v is along the normal of the ellipsoid
at the corresponding friction force vector fc.

sliding come from gravity and the dynamic load on the
object.

The frame {b} is the body frame located at the CoM
of the object, and {fi} is the frame located at each fin-
ger. All the configurations and velocities are defined with
respect to the world frame {w} unless noted otherwise. We
denote the configuration of the object by its pose qo =
[x, y, θ]T . The location of each of the n finger contacts is
defined as qfi = [xfi, yfi, θfi]

T , and the entire grasp is
defined as qf = [qf1, . . . ,qfn]T . The relative positions
between the object and the finger contacts are defined as
rfi = [xrfi, yrfi, θrfi]

T where qfi = qo + rfi, and the
relative position for the entire grasp is defined as rf =
[rf1, . . . , rfn]T . The configuration and velocity of the system
are denoted as q = [qo,qf ]T and q̇ = [q̇o, q̇f ]T . The full
state of the system is defined as [q, q̇]T . Each finger contact
normal force is represented by fNi defined in the finger
frame {fi}. The set of all finger normal forces is defined
as fN = [fN1, . . . , fNn]T .

V. LIMIT SURFACES

In this section we discuss the concept of limit surfaces
(LS) and how they are shaped given point contact and soft-
finger friction models. Additionally we derive an expression
for the frictional force from a soft-finger contact when given
a relative velocity as well as an expression for the grasp limit
surface given n individual limit surfaces.

A. Point Contact

A limit surface is defined as the boundary of the set of
forces applied to an object that a contact can resist before
the object starts sliding [9]. Based on the Coulomb friction
model, a hard finger pressed against an object can only
generate linear friction forces. Assuming isotropic friction,
the limit curve for a point contact would be a circle centered
about the origin where fx = fy = µfN . Any external force
fext within this circle can be resisted. When fext exceeds µfN ,
a relative velocity ∆vl occurs in a direction normal to the
LS and parallel to fext.

B. Soft Finger

For a soft-finger model the contact area is no longer
a point, and therefore linear as well as rotational forces
can be resisted. The LS for a soft-finger contact can be
approximated by an ellipsoid in the local contact force space
fx, fy,mz , and expressed in the world frame {w} as shown



in Fig. 4 [10]. A mathematical representation of this ellipsoid
is given by the following equation:

fTAf = 1, (10)

where f = [fx, fy,mz]
T represents an arbitrary friction

force vector at the contact point and the matrix A ∈ R3×3

is a symmetric positive-definite matrix that determines the
shape of the LS ellipsoid. In the general ellipsoid definition,
A = Diag(s−2

1 , s−2
2 , s−2

3 ) where s1, s2 and s3 represent the
lengths of the semi-principal axes. We again assume isotropic
dry friction so the maximum tangential force the contact can
resist is s1 = s2 = µfN . The maximum moment along the
normal direction is s3 = acµfN where a is the radius of the
contact patch and c is a constant from numerical integration.
Here we take c = 0.6 based on findings in [10]. The radius
of the contact patch depends on fN , so each normal force
fNi has a corresponding contact radius ai.

When sliding happens, the contact force fc is on the
LS, and the relative velocity is along the direction of the
normal at that point (Fig. 4). Hence ∆v and fc are not
always parallel, but they always satisfy fc · ∆v ≥ 0, i.e.,
friction forces can only dissipate energy. Given a particular
friction force fc and the ellipsoid it lies on, we can write the
relative velocity ∆v along the direction of the gradient of
the ellipsoid with respect to f at fc as

∆v = λ
∂

∂f

(
fTAf

)∣∣∣∣
fc

(11)

for some λ ∈ R which scales the normal vector to the
relative velocity vector. When given a relative velocity, the
corresponding friction force can be written as

fc =
1

λ
B∆v, (12)

where B =
1

2
A−1. Substituting (12) into (10) and utilizing

(A−1)T = A−1, we have

λ =
1

2

√
∆vTA−1∆v. (13)

Combining (12)-(13) we derive the function Γ(·) which gives
the friction force vector as a function of a given relative
velocity ∆v:

fc = Γ(∆v) =
A−1∆v√

∆vTA−1∆v
. (14)

C. Grasp Limit Surface

When there are multiple fingers on an object, the individ-
ual LS can be mapped to a consistent frame to generate the
grasp limit surface (GLS). A reasonable choice of reference
frame is the body frame {b} of the object. Gi(rfi) ∈ R3×3

is the map which relates the friction force at each contact to
the wrench applied on the object. Gi(rfi) depends on the
contact’s position relative to the object’s CM and is defined
as

Gi(rfi) = Gi =

 1 0 0
0 1 0
−yrfi xrfi 1

 . (15)
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Fig. 5. This figure shows a 4-finger grasp and the resulting limit surfaces
in the local finger frames, the body frame, and the composite grasp limit
surface. (a) is a diagram of the grasp with three fingers on one side and one
on the other. (b) is the identical limit surface for fingers 1-3 in the local
finger frames. (c), (d), and (e) show the limit surfaces from fingers 1, 2, and
3 respectively mapped to the {b} frame using the Gi transformation. (f)
shows the limit surface for finger 4. Because it is located at the origin of {b}
the mapping to {b} is the identity as shown in (g). (h) shows the composite
grasp limit surface. The axes for (b)-(g) are all aligned and equivalent to
the axes shown in (h).

The grasp limit surface is the convex hull of the sum of all
possible friction forces that the grasp can resist. The GLS
in the body frame can be expressed as

GLS = δ{f |f =

n∑
i=1

kiGifi ∀ fi ∈ LSi and 0 ≤ ki ≤ 1},

(16)
where f = [fx, fy,mz]

T is an arbitrary friction force on
the GLS, LSi is the limit surface for contact i, ki is a
scaling factor allowing forces inside LSi, and fi is a friction
force/torque set on the ith limit surface.

Fig. 5 shows an example of a four-fingered grasp on an
object and the resulting limit surfaces in the local contact
frame expressed in {w}, the common body frame {b}, and
the combined grasp limit surface expressed in {b}.

VI. DYNAMICS
In this section we derive the sliding dynamics for the

case where the object is sticking and when it is sliding. For
this analysis it is assumed that the system state [q, q̇]T , the
normal forces at each finger fNi(t), and either the desired
relative finger accelerations r̈fi(t) or the finger accelerations
q̈fi(t) are given.

A. Sticking Dynamics
The object’s dynamics are defined as

Mq̈o =

n∑
i=1

Gifi + g, (17)

where M is the mass matrix of the object, fi is the friction
force/torque set from each finger, and g is the wrench on
the object due to gravity. For the sticking case the frictional
force at each contact is contained within the limit surface,
i.e. fTi Aifi < 1.
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Fig. 6. A plot of the relative motion profile for 1-DOF.

B. Sliding Dynamics

When sliding is occurring, the relative velocity at each
contact is defined as

∆vi = q̇fi −GT
i q̇o. (18)

The forward dynamics problem is to determine the relative
acceleration of each finger r̈fi(t) when given the state of
the system [q, q̇]T , the normal force vector fNi(t), and the
acceleration of each finger q̈fi(t). First we define the relative
acceleration as

r̈fi = q̈fi − q̈o. (19)

The dynamics in (17) can be rewritten as

q̈o = M−1

[
n∑
i=1

Gifi + g

]
. (20)

Now combining (14), (18), (19), and (20), we can write the
relative finger acceleration as

r̈fi = q̈fi −M−1

[
n∑
i=1

GiΓ(q̇fi −GT
i q̇o) + g

]
. (21)

This equation allows us to calculate the relative sliding
motion caused by given finger accelerations, and solves the
forward dynamics problem.

The inverse problem is trivial, and (21) can easily be
rearranged to solve for the required finger acceleration when
given a desired relative sliding motion. For the inverse prob-
lem it is more convenient if we give the relative acceleration
w.r.t. the body frame as the input. We denote r̈b

fi as the
relative acceleration w.r.t. the body frame {b}. We have

rfi = Ti(θ)r
b
fi, (22)

where Ti(θ) ∈ SE(2) is the homogeneous transformation
which maps rb

fi into rfi. Taking the first and second deriva-
tive with respect to time on both sides of (22) gives us

ṙfi = Ṫir
b
fi + Tiṙ

b
fi, r̈fi = T̈ir

b
fi + 2Ṫiṙ

b
fi + Tir̈

b
fi.

VII. MOTION PLANNING

In this section we study the motion planning problem
which can be stated as: given an initial state of the system
and a desired relative configuration between the fingers and
the object, find the finger trajectories and finger normal force
profiles that realize the reconfiguration.

The general planning idea is inherited from the 1-DOF
example in Section III. The planar finger motion has 3-DOFs
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Fig. 7. Friction forces and corresponding relative velocities shown in the
{fi} frame during the sliding phase. (a) is for the case in Section VIII-A,
and (b) is for the case in Section VIII-B. The ellipsoid represents the limit
surface LS. The brown arrows represent the friction force vectors f , and the
cyan arrows represent the corresponding relative velocities ∆v. The black
curves are the trajectories of the friction force vectors on the LS during the
sliding phase. In (a), the direction of ∆v is constant in the sliding phase, so
the trajectory of friction force on the LS is a point. The mz axis is scaled
by a factor of 1/a for display purposes.

and the frictional forces and sliding velocities are defined by
the limit surface as discussed in Section V. For this analysis
we assume that all fingers move the same way relative to the
hand. The full repositioning motion consists of three phases;
1) sticking, 2) sliding, and 3) sticking. In the sticking phases
the friction forces are contained within the limit surface so
sliding does not occur, but in the sliding phase the forces
lie on the limit surface and relative motions occur. Motion
planning for the sticking phases simply involves choosing
coupled finger/object accelerations that do not cause sliding,
remain within the workspace, and achieve desired changes
in the state.

For the sliding portion the motion planning problem must
be solved for all fingers simultaneously to satisfy the limit
surface force and acceleration constraints. Our proposed
method for sliding phase motion planning is to choose a
piecewise relative acceleration profile r̈b

f (t) w.r.t. the object
frame {b} and times T2 and T3 for the accelerations to be
applied. Once these parameters are defined, the motions of
the fingers and the object can be calculated by the results
from Section VI. An example of a proposed acceleration
profile is shown in Fig. 6.

The accelerations in the sticking phases are also assumed
to be constant. In the first phase the fingers accelerate the
object to the initial sliding velocity q̇o,is in time T1. In the
second phase, the finger slides on the object following the
relative acceleration profile in time T23. At the beginning of
sliding we assume the relative velocity is along the direction
of the desired relative acceleration at that instant to allow
for the calculation of the friction force in (14). In the third
phase the finger brings the object to rest with no sliding in
time T4.

With all the assumptions above, the displacement of the
finger is determined by the relative acceleration profile r̈b

f (t),
q̇o,is, T1, T23, T4. The motion planning problem is defined
as choosing the above parameters to satisfy the workspace
and robot joint-limit constraints.

VIII. SIMULATION

In this section we run simulations using the results from
Sections VI and VII for the case where the object has only
relative linear repositioning with no rotation, as well as
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sliding regions. The black arrows in the sliding regions represent the object linear acceleration directions during the sliding phase. The thick black arrows
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the case where the object has relative linear and rotational
repositioning with respect to the grasp. For this analysis we
assume a two-point soft-finger pinch grasp of a rectangular
extruded object moving in the vertical plane as shown in
Fig. 3. We also assume that the normal force fNi for
each finger is constant and of equal magnitude. Due to the
symmetry of a pinch grasp, the contact is modeled as a
single finger with twice the normal force. It is also assumed
that q̇init = q̇final = 0. The robot workspace is a 1 m
circle centered at the origin of the world frame. Note that in
the following simulations, we only give the object’s initial
configuration as an input; the object’s final configuration is
determined by the motions of the three phases. The object
is defined as a rectangle with a length of 0.1 m, width of
0.06 m, and a mass of 0.023 kg. The friction coefficient at
the contact is 0.38.

A. Linear Relative Displacement

In this section we consider the case where only relative
linear sliding in the x and y directions occurs. To achieve
this we choose the direction of the relative acceleration
so that it always intersects the CoM of the object. We
give the initial relative position w.r.t. {b} as rb

f,init =

[−0.01 m,−0.02 m, π rad]T and the goal relative position
rb
f,goal = [0.01 m, 0.02 m, π rad]T . The normal force is 1.25 N

and the radius of the contact patch is a = 0.0174 m. The
motion follows the same phase outline shown in Section VII,
with the values T1 = 0.3 s, T23 = 0.2 s, and T4 = 1.1 s. In
the sliding phase, the relative acceleration w.r.t. {b} is given
as a piecewise profile

r̈b
f =

{
[2 m/s2, 4 m/s2, 0]T , 0.3 s ≤ t < 0.4 s
[−2 m/s2,−4 m/s2, 0]T , 0.4 s ≤ t < 0.5 s.

These values are chosen manually to satisfy the workspace,
joint-limit, and acceleration constraints of the WAM arm.
The sliding force for the linear case is shown in Fig. 7(a),
and the resulting finger motion is shown in Fig. 8 (a) and
(b).

(a) (b)
Fig. 9. (a) The ERIN instrumented manipulation environment, showing the
7-DOF WAM arm, the Allegro hand, four Syntouch biotac sensor fingertips,
and part of the 10-camera OptiTrack high-speed tracking system. (b) The
light-weight, spring-powered, constant normal force gripper.

B. Linear & Rotational Relative Displacement

This is a more general case where both linear and ro-
tational relative repositioning occur. Initial relative position
w.r.t. {b} is given as rb

f,init = [−0.01 m, 0.04 m, 0.75π rad]T

and rb
f,goal = [0.01 m, 0.04 m, π rad]T . The normal force is

2.5 N and the radius of the contact patch is a = 0.05 m. The
times of the three phases are given as T1 = 0.3 s, T23 = 0.2 s,
and T4 = 0.3 s. In the sliding phase, the relative acceleration
profile is manually chosen as:

r̈b
f =

{
[2 m/s2, 0, 25π rad/s2]T , 0.3 s ≤ t < 0.4 s
[−2 m/s2, 0,−25π rad/s2]T , 0.4 s ≤ t < 0.5 s.

The solved sliding friction force profile is shown in Fig. 7(b),
and the object trajectory and the trajectory of the end of the
finger are shown in Fig. 8(c) and (d).

IX. EXPERIMENT

In this section We tested the simulated trajectory from
Section VIII-A using the ERIN instrumented manipulation
environment shown in Fig. 9 (a). In this study, we used a
light-weight spring-powered constant normal force gripper
as shown in Fig. 9 (b). The gripper has a mass of 0.105 kg
including the object. The control loop runs at 500 Hz, with
vision feedback of the object and gripper poses at 360 Hz.
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To test the simulation, the trajectory derived in Sec-
tion VIII-A was given as a reference to the endpoint of
the robot arm. By following this motion, we were able
to reposition the object during the sliding phase. Fig. 10
shows how accurately the WAM arm followed the given
reference trajectory. Fig. 11 shows how accurately the object
followed the desired sliding motion rb

f . The simulations and
the experimental results can be seen in the attached video.

We tested the consistency of the repositioning by repeating
the experiment multiple times and the results are shown in
Fig. 12. The experiment showed the same general sliding
motion for each trial but with significant error in the final
position. The mean error in rb

f,goal was 1.03 cm with s.d.
of 0.23 cm for x, 1.12 cm with s.d. of 0.4 cm for y, and
−0.16 rad with s.d. of 0.27 rad for θ. This could have been
caused by the robot trajectory tracking errors, and uncertainty
in measured friction parameters, the gripper normal force,
and the initial position.

X. CONCLUSION

In this paper, we presented a general framework for
planning dynamic in-hand sliding manipulation motions and
analyzed the dynamics for n-fingered grasp using soft-finger
limit surface models. The framework was applied to the
problem of a two-fingered grasp in the vertical plane. Two
sliding motions were simulated by the proposed methods,
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Fig. 12. Results of multiple trials plotted in the relative displacement space.
The colored triangles show the initial relative position w.r.t. the object frame,
and the colored circles show the final relative position for different trials.
In every trial the robot followed the same reference trajectory. The red ones
are desired reference values. The grey plane shows the zero relative rotation
plane.

and one was validated experimentally. In future work we
plan to implement feedback to improve the robustness of
dynamic in-hand sliding manipulation. We propose the use of
the iterative technique discussed in Section III-D for reducing
error from uncertainty in measured friction parameters, the
gripper normal force, and the initial position. We will also
address controlled in-hand sliding manipulation for other
grasp geometries and compliantly mounted fingers with force
feedback. Furthermore we will improve the controller for the
WAM arm to reduce trajectory tracking error.
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