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Abstract

This paper derives nonlinear feedback control synthesis for general control affine systems using second-order actions,

the second-order needle variations of optimal control, as the basis for choosing each control response to the current

state. A second result of this paper is that the method provably exploits the nonlinear controllability of a system by virtue

of an explicit dependence of the second-order needle variation on the Lie bracket between vector fields. As a result,

each control decision necessarily decreases the objective when the system is nonlinearly controllable using first-order Lie

brackets. Simulation results using a differential drive cart, an underactuated kinematic vehicle in three dimensions, and

an underactuated dynamic model of an underwater vehicle demonstrate that the method finds control solutions when the

first-order analysis is singular. Finally, the underactuated dynamic underwater vehicle model demonstrates convergence

even in the presence of a velocity field.
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1 . Introduction

With many important applications in aerial or underwa-
ter missions, systems are underactuated either by design,
to reduce actuator weight, expenses, or energy consump-
tion, or as a result of technical failures. In both cases, it
is important to develop control policies that can exploit
the nonlinearities of the dynamics, are general enough for
this broad class of systems, and easily computable. Vari-
ous approaches to nonlinear control range from steering
methods using sinusoid controls (Murray and Sastry, 1993),
sequential actions of Lie bracket sequences (Murray et al.,
1994) and backstepping (Kokotovic, 1992; Seto and Bail-
lieul, 1994) to perturbation methods (Junkins and Thomp-
son, 1986), sliding mode control (SMC) (Perruquetti and
Barbot, 2002; Utkin, 1992; Xu and Özgüner, 2008), intel-
ligent control (Brown and Passino, 1997; Harris et al.,
1993) or hybrid control (Fierro et al., 1999), and nonlin-
ear model predictive control (NMPC) methods (Allgöwer
et al., 2004). These schemes have been successful in well-
studied examples including, but not limited to, the rolling
disk, the kinematic car, wheeling mobile robots, the Snake-
board, surface vessels, quadrotors, and cranes (Becker and
Bretl, 2010; Boskovic et al., 1999; Bouadi et al., 2007a,b;
Bullo et al., 2000; Chen et al., 2013; Escareño et al., 2013;
Fang et al., 2003; Kolmanovsky and McClamroch, 1995;
Lin et al., 2014; Morbidi and Prattichizzo, 2007; Nakazono

et al., 2008; Reyhanoglu et al., 1996; Roy and Asada, 2007;
Shammas and de Oliveira, 2012; Toussaint et al., 2000).

The aforementioned methods have limitations. In the
case of perturbations, the applied controls assume a future
of control decisions that do not take the disturbance his-
tory into account; backstepping is generally ineffective in
the presence of control limits and NMPC methods are
typically computationally expensive. SMC methods suffer
from chattering, which results in high energy consump-
tion and instability risks by virtue of exciting unmodeled
high-frequency dynamics (Khalil, 2002), intelligent con-
trol methods are subject to data uncertainties (El-Nagar
et al., 2014), whereas other methods are often case-specific
and will not hold for the level of generality encountered
in robotics. We address these limitations by using needle
variations to compute real-time feedback laws for general
nonlinear systems affine in control, as discussed next.
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1.1. Advantages of needle variations to optimal

control

In this paper, we investigate using needle variation methods
to find optimal controls for nonlinear controllable systems.
Needle variations consider the sensitivity of the cost func-
tion to infinitesimal application of controls and synthesize
actions that reduce the objective (Aseev and Veliov, 2014;
Shaikh and Caines, 2007). Such control synthesis methods
have the advantage of efficiency in terms of computational
effort, making them appropriate for online feedback, simi-
lar to other model predictive control methods such as iLQG
(Todorov and Li, 2005), but with the advantage, as shown
here, of having provable formal properties over the entire
state space. For time evolving objectives, as in the case
of trajectory tracking tasks, controls calculated from other
methods (such as sinusoids or Lie brackets for nonholo-
nomic integrators) may be rendered ineffective as the target
continuously moves to different states. In such cases, needle
variation controls have the advantage of computing actions
that directly reduce the cost, without depending on future
control decisions. However, needle variation methods, to
the best of the authors’ knowledge, have not yet considered
higher than first-order sensitivities of the cost function.

We demonstrate analytically in Section 3 that, by consid-
ering second-order needle variations, we obtain variations
that explicitly depend on the Lie brackets between vector
fields and, as a consequence, the higher-order nonlinearities
in the system. Later, we show that, for classically studied
systems, such as the differential drive cart, this amounts
to being able to guarantee that the control approach is
globally certain to provide descent at every state, despite
the conditions of Brockett’s theorem (Brockett, 1983) on
nonexistence of smooth feedback laws for such systems.
We extend this result by proving that second-order nee-
dle variations controls necessarily decrease the objective
for the entire class of systems that are controllable with
first-order Lie brackets. As a consequence, provided that
the objective is convex with respect to the state (in the
unconstrained sense), second-order needle variation con-
trols provably guarantee that the agent reaches the target in
a collision-free manner in the presence of obstacles without
relying on predefined trajectories.

1.2. Paper contribution and structure

This paper derives the second-order sensitivity of the cost
function with respect to infinitesimal duration of inserted
control, which we will refer to interchangeably as the
second-order mode insertion gradient or mode insertion
Hessian (MIH). We relate the MIH expression to control-
lability analysis by revealing its underlying Lie bracket
structure and present a method of using second-order nee-
dle variation actions to expand the set of states for which
individual actions that guarantee descent of an objective

function can be computed. Finally, we compute an analyt-
ical solution of controls that uses the first two orders of
needle variations.

This paper expands the work presented in Mamakoukas
et al. (2017) by including the derivations of the MIH,
the proofs that guarantee descent, and extensive simula-
tion results that include comparisons with alternative feed-
back algorithms. Further, we extend the results to account
for obstacles and prove the algorithm finds collision-free
solutions for the controllable systems considered, includ-
ing simulations of obstacle avoidance for static and moving
obstacles.

The content is structured as follows. In Section 2, we pro-
vide relevant research background in the field of motion
planning for controllable systems. In Section 3, we prove
that second-order needle variations guarantee control solu-
tions for systems that are nonlinearly controllable using
first-order Lie brackets. We use this result to provably gen-
erate collision-free trajectories that safely reach the target
among obstacles provided convex objectives in the uncon-
strained sense. In Section 4, we present an analytical control
synthesis method that uses second-order needle actions. In
Section 5, we implement the proposed synthesis method
and present simulation results on a controllable, under-
actuated model of a 2D differential drive vehicle, a 3D
controllable, underactuated kinematic rigid body, and a 3D
underactuated dynamic model of an underwater vehicle.

2 . Existing methods for controllable systems

In this section, we present a review of some popular
methods that are available for underactuated, controllable
systems, followed by a discussion of techniques for colli-
sion avoidance. An introduction to these methods, as well as
additional algorithms for controllable systems, can be found
in La Valle (2011).

2.1. Optimization algorithms for nonholonomic

controllable systems

Nonholonomic systems are underactuated agents subject
to nonintegrable differential constraints. Examples include
wheeled agents that are not allowed to skid (e.g. unicy-
cle, differential drive, tricycle). Nonholonomic systems are
of interest to the control community because one needs to
obtain solutions for motion planning tasks (Kolmanovsky
and McClamroch, 1995).

The concept of controllability is indispensable in the
study of nonholonomic systems. Controllability analyti-
cally answers the existence of control solutions that move a
certain agent between arbitrary states in finite time, and, in
doing so, it reveals all possible effects of combined control
inputs of underactuated systems that are subject to velocity,
but not displacement, constraints.

A popular approach in controlling nonholonomic sys-
tems is piecewise constant motion planning (Lafferriere and
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Sussmann, 1993; Sussmann, 1991). Lafferriere and Suss-
mann (1991, 1993) extended the original dynamics with
fictitious action variables in the direction of the nested
Lie brackets to determine a control for the extended sys-
tem. They first compute the time the system must flow
along each vector field, in a sequential manner, to accom-
plish a given motion of the extended system. Then, using
the Campbell–Baker–Hausdorff–Dynkin (CBHD) formula
(La Valle, 2011; Rossmann, 2002; Strichartz, 1987), they
recover the solution in terms of the original inputs of the
system.

On the other hand, piecewise constant motion plan-
ning is model-specific, since the process changes for dif-
ferent number of inputs. In addition, solutions involve
a sequence of individual actions that generate the Lie
bracket motion and the actuation sequence grows increas-
ingly larger for higher-order brackets. Compensating for the
third-order error in the CBHD formula involves 2 second-
order Lie brackets and 20 successive individual inputs, each
of infinitesimal duration (McMickell and Goodwine, 2007).
The sequence is described in detail by Lafferriere and Suss-
mann (1993). In practice, such actuation becomes chal-
lenging as the number of switches grows. The theoretically
infinitesimal duration of each input may be hard to repro-
duce in hardware, although, in the face of uncertainty and
time-evolving trajectories, actuation consisting of a large
sequence of controls (e.g. of 20 actions) is likely to change
once feedback is received.

Another popular approach is steering using sinusoids
(Brockett, 1982; Laumond et al., 1998; Murray et al., 1994;
Murray and Sastry, 1993; Sastry, 2013; Teel et al., 1995).
This method applies sinusoidal control inputs of integrally
related frequencies. States are sequentially brought into the
desired configuration in stages, whereas the rest of the states
remain invariant over a single cycle. This approach has been
validated in generating motion of an underactuated robot
fish (Morgansen et al., 2001).

Steering using sinusoids suffers from the complicated
sequence of actions that grows as a function of the inputs
involved. Moreover, in addition to also being model-
specific, the method addresses each state separately, mean-
ing each state is controlled by its own periodic motion,
requiring N periods for an N-dimensional system, leading
to slow convergence. Further, solutions focus on the final
states (at the end of each cycle) and not their time evolu-
tion, hence they may temporarily increase the running cost
(consider the car example of Figure 7 in Murray and Sastry
(1993)). As with the method of piecewise constant motion
planning, when tracking a moving target, these factors also
compromise the performance of this approach.

Other trajectory-generation techniques for controllable
systems involve differential flatness (Fliess et al., 1995;
Lamiraux and Laumond, 2000; Rathinam and Murray,
1998; Ross and Fahroo, 2004; Rouchon et al., 1993)
and kinematic reduction (Bullo and Lynch, 2001; Lynch
et al., 2000; Murphey and Burdick, 2006). Control based

on differential flatness uses outputs and their derivatives to
determine control laws. However, as discussed by Choud-
hury and Lynch (2004), there is no automatic procedure
to discover whether flat outputs exist. Further, differen-
tial flatness does not apply to all controllable systems and
motion planning is further complicated when control limits
or obstacles are present (Bullo and Lynch, 2001).

2.2. Motion planning for controllable systems in

the presence of obstacles

Controllability in its classical sense concerns itself with the
existence of an action trajectory that can move the agent to
a desired state, subject to the differential constraints posed
by the dynamics, in the absence of obstacles. Controlla-
bility is an inherent property of the dynamics and reveals
all allowable motion, disregarding the presence of physical
constraints in the environment. This is true for the methods
discussed in Section 2.1.

Feasible path planning amidst obstacles is often treated
separately from the optimal control problem. Most com-
monly, feasible trajectories are generated with efficient
path planners, such as rapidly-exploring random tree (RRT)
and probabilistic road map (PRM) methods (LaValle and
Kuffner, 2001; Hsu et al., 2002). The distinction between
path planning and optimal control can be seen in work by
Choudhury and Lynch (2004) and Lynch et al. (2000) that
uses such motion planners to generate trajectories among
obstacles and then uses them as a reference to compute
the optimal control. In this setting, nonholonomic motion
consists of two stages, the path planning and the feedback
synthesis that tracks the feasible trajectory.

Another solution to obstacle avoidance in motion plan-
ning is the use of barrier certificates (Prajna et al., 2007).
Barrier certificates provably enforce collision-free behavior
by minimally perturbing, in a least-squares sense, the con-
trol response in order to satisfy safety constraints. Feedback
synthesis proceeds without accounting for obstacles and
solutions are modified, only when necessary, via a quadratic
program (QP) subject to constraints that ensure collision
avoidance (Ames et al., 2014; Borrmann et al., 2015; Wang
et al., 2017; Wu and Sreenath, 2016; Xu et al., 2015).

Additional solutions to obstacle avoidance include com-
pensating functions that eliminate local minima in the
objective caused by the obstacles (Deng et al., 2008), as
well as designing navigation functions using inverse Lya-
punov expressions (Tanner et al., 2001). The former method
computes the local minima in the objective and constructs
a plane surface function to remove them and make the
objective convex. This process can be cumbersome, as one
would have to locate all local minima in the objective
induced by the obstacles and then calculate the compen-
sating function. On the other hand, navigation functions, as
described in Rimon and Koditschek (1992) and Tanner et al.
(2001), are globally convergent potential functions and are
system-specific.
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Fig. 1. A fixed-value perturbation in the nominal control, intro-

duced at time τ and with duration λ, and the associated variation

in the state. In the limit λ → 0, the control perturbation becomes

a needle variation.

Several of these collision avoidance algorithms are not
system-specific and could be implemented with our con-
troller, later outlined in Section 4. In simulation results, pre-
sented in Section 5, we show collision avoidance using only
penalty functions in the objective, demonstrating that the
proposed controller succeeds in tasks (collision avoidance)
that traditionally require sophisticated treatment.

3 . Needle variation controls based on

nonlinear controllability

In this section, we relate the controllability of systems to
first- and second-order needle variation actions. After pre-
senting the MIH expression, we relate the MIH to the Lie
bracket terms between vector fields. Using this connec-
tion, we tie the descent property of needle variation actions
to the controllability of a system and prove that second-
order needle variation controls can produce control solu-
tions for a wider set of the configuration state space than
first-order needle variation methods. As a result, we are able
to constructively compute, via an analytic solution, control
formulas that are guaranteed to provide descent, provided
that the system is controllable with first-order Lie brackets.
Generalization to higher-order Lie brackets appears to have
the same structure, but that analysis is postponed to future
work.

3.1. Second-order mode insertion gradient

Needle variation methods in optimal control have served as
the basic tool in proving the Pontryagin’s maximum prin-
ciple (Pontryagin et al., 1962; Dmitruk and Osmolovskii,
2014; Garavello and Piccoli, 2005). Using piecewise
dynamics, they introduce infinitesimal perturbations in con-
trol that change the default trajectory and objective (see
Figure 1). Such dynamics are typically used in optimal
control of hybrid systems to optimize the schedule of a-
priori known modes (Egerstedt et al., 2006; Caldwell and
Murphey, 2006).

Here, instead, we consider dynamics of a single switch
to obtain a new control mode u at every time step that

will optimally perturb the trajectory (Ansari and Murphey,
2016). The feedback algorithm presented in Ansari and
Murphey (2016), however, only considers the first-order
sensitivity of the cost function to a needle action and, as
a result, often fails to provide solutions for controllable
underactuated systems. By augmenting the algorithm with
higher-order information (via the MIH), we can provide
solutions in cases when the first-order needle variation
algorithm in Ansari and Murphey (2016) is singular.

Consider a system with state x : R 7→ R
N and control

u : R 7→ R
M with control-affine dynamics of the form

f (t, x(t) , u(t)) = g(t, x(t)) +h(t, x(t)) u(t) , (1)

where g(t, x(t)) is the drift vector field. Consider a time
period [to, tf ] and control modes described by

ẋ(t) =









f1(x(t) , v(t)) , to ≤ t < τ − λ
2

f2(x(t) , u(τ)) , τ − λ
2 ≤ t < τ + λ

2

f1(x(t) , v(t)) , τ + λ
2 ≤ t ≤ tf

, (2)

where f1 and f2 are the dynamics associated with default

and inserted control v and u, respectively. Parameters λ

and τ are the duration of the inserted dynamics f2 and the
switching time between the two modes.

Note that the default control v(t) is the input for the nom-
inal trajectory, v(t) could itself be the result of a different
controller, which is then improved by the insertion of a new
control vector u(t) creating a switched mode f2. In addi-
tion, whereas the default control v(t) of the switched mode
sequence in (2) may be time-dependent, the dynamics f2
have control u(τ ) that has a fixed value over [τ − λ

2 , τ + λ
2 ].

Given a cost function J of the form

J (x(t)) =

∫ tf

to

l1(x(t)) dt + m(x(tf)) , (3)

where l1(x(t)) is the running cost and m(x(t)) the termi-
nal cost, the mode insertion gradient (MIG), derived in
Egerstedt et al. (2006), is

dJ

dλ+
= ρT( f2−f1) , (4)

where ρ : R 7→ R
N is the first-order adjoint state, which is

calculated from the default trajectory and given by

ρ̇ = −Dxl1
T−Dxf T

1 ρ (5)

subject to: ρ( tf ) = Dxm(x(tf ))T .

We use the subscript λ+ to indicate that a certain variable is
considered after evaluating the limit λ → 0. For brevity,
the dependencies of variables are dropped. Although the
objective for needle variation controls has typically not
included a control term, doing so is straightforward and
yields similar performance. Work in Ansari and Murphey
(2016) has considered objectives with control terms, and
one can recompute the mode insertion gradient and MIH
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assuming the objective depends on u without impacting any
of the rest of the approach.

The derivation of the MIH is similar to Caldwell and
Murphey (2011) and is presented in Appendix B. For
dynamics that do not depend on the control duration, the
MIH1 is given by

d2J

dλ2
+

= ( f2−f1)T�( f2−f1) +ρT(Dxf2·f2+Dxf1·f1−2Dxf1·f2)

−Dxl1·( f2−f1) , (6)

where � : R 7→ R
N×N is the second-order adjoint state,

which is calculated from the default trajectory and is given
by

�̇ = −Dxf1
T�−�Dxf1−D2

x l1−

N
∑

i=1

ρiD
2
x f i

1 (7)

subject to: �(tf) = D2
xm(x(tf))

T .

The superscript i in the dynamics f1 refers to the ith element
of the vector.

3.2. Dependence of second-order needle

variations on Lie bracket structure

The Lie bracket of two vectors f (x) and g(x) is

[f , g](x) =
∂g

∂x
f (x) −

∂f

∂x
g(x) ,

which generates a control vector that points in the direction
of the net infinitesimal change in state x created by infinites-
imal noncommutative flow φ

f
ε ◦ φ

g
ε ◦ φ

−f
ε ◦ φ

−g
ε ◦ x0, where

φ
f
ε is the flow along a vector field f for time ε (Jakubczyk,

2001; Murray et al., 1994). Lie brackets are most com-
monly used for their connection to controllability (Chow,
1940/1941; Rashevsky, 1938), but here they will show up in
the expression describing the second-order needle variation.

We relate second-order needle variation actions to Lie
brackets to connect the existence of descent-providing con-
trols to the nonlinear controllability of a system. Let hi :
R 7→ R

N denote the column control vectors that make up
h : R 7→ R

N×M in (1) and ui ∈ R be the individual control
inputs. Then, we can express dynamics as

f = g+

M
∑

i=1

hiui

and, for default control v = 0, we can re-write the MIH as

d2J

dλ2
+

=

( M
∑

i=1

hiui

)T

�

M
∑

j=1

hjuj+ρT
( M

∑

i=1

(Dxhiui) · g

−Dxg·( hiui) +

M
∑

j=1

Dxhjuj

M
∑

j=1

hjuj

)

−Dxl1

M
∑

i=1

hiui.

Splitting the sum expression into diagonal (i = j) and off-
diagonal (i 6= j) elements, and by adding and subtracting
2
∑M

i=2

∑i−1
j=1(Dxhiui) ( hjuj), we can write

M
∑

i=1

Dxhiui

M
∑

j=1

hjuj =

M
∑

i=2

i−1
∑

j=1

[hi, hj]uiuj

+2
M

∑

i=2

i−1
∑

j=1

(Dxhiui) ( hjuj) +

M
∑

i=j=1

(Dxhiui) ( hiui) .

Then, we can express the MIH as

d2J

dλ2
+

=

M
∑

i=1

M
∑

j=1

uiujh
T
i �hj+ρT

( M
∑

i=2

i−1
∑

j=1

[hi, hj]uiuj

+2
M

∑

i=2

i−1
∑

j=1

(Dxhi) hjuiuj+

M
∑

i=j=1

(Dxhi) hiuiui

+

M
∑

i=1

[g, hi]ui

)

−Dxl

( M
∑

i=1

hiui

)

.

The expression contains Lie bracket terms of the control
vectors that appear in the system dynamics, indicating that
second-order needle variations incorporate higher-order
nonlinearities. By associating the MIH to Lie brackets, we
next prove that second-order needle variation actions can
guarantee decrease of the objective for systems that are
controllable with first-order Lie brackets.

3.3. Existence of control solutions with first- and

second-order mode insertion gradients

In this section, we prove that the first two orders of the mode
insertion gradient can be used to guarantee controls that
reduce objectives of the form (3) for systems that are con-
trollable with first-order Lie brackets. The analysis is appli-
cable to optimization problems that satisfy the following
assumptions.

Assumption 1. The vector elements of dynamics f1 and f2
are real, bounded, C2 in x, and C0 in u and t.

Assumption 2. The incremental cost l1(x) is real, bounded,

and C2 in x. The terminal cost m(x(tf )) is real and twice

differentiable with respect to x(tf ).

Assumption 3. Default and inserted controls v and u are

real, bounded, and C0 in t.

Under Assumptions 1–3, the mode insertion gradient and
MIH expressions exist and are unique. Then, as we show
next, there are control actions that can improve any objec-
tive as long as there exists t ∈ [to, tf ] for which x(t) 6=
x∗(t).

Definition 1. A trajectory x∗ described by a pair (x∗, u∗) is

the global minimizer of the objective function J (x∗(t)) for

which J (x∗(t)) ≤ J (x(t)) ∀ x(t).
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Given Definition 1, a trajectory x∗ described by a pair
(x∗, u∗) is the global minimizer of the cost function in the
unconstrained sense (not subject to the dynamics of the
system) and satisfies DxJ (x∗(t)) = 0 throughout the time
horizon considered.

Assumption 4. The pair (x∗, u∗) describes the only tra-

jectory x∗ for which the unconstrained derivative of the

objective is equal to zero (i.e. DxJ (x∗(t)) = 0 ∀ t ∈ [to, tf ]).

Assumption 4 is necessary to prove that the first-order
adjoint is nonzero, which is a requirement for the con-
trollability results shown in this work. It assumes that the
objective function in the unconstrained sense does not have
a maximizer or saddle point and has only one minimizer
x∗ described by (x∗, u∗) that indicates the target trajectory
or location. It is an assumption that, among other choices,
can be easily satisfied with a quadratic cost function that
even includes penalty functions associated with physical
obstacles.

Proposition 1. Consider a pair (x, v) that describes the

state and default control of (2). If (x, v) 6=(x∗, v∗), then the

first-order adjoint ρ is a nonzero vector.

Proof. Using (3), and by Assumption 4,

x 6= x∗ ⇒ DxJ (x(t)) 6= 0

⇒

∫ tf

to

Dxl1(x(t)) dt+Dxm(x(tf )) 6= 0

⇒

∫ tf

to

Dxl1(x(t)) dt 6= 0 OR Dxm(x(tf )) 6= 0

⇒ Dxl1(x(t)) 6= 0 OR Dxm(x(tf )) 6= 0

⇒ ρ̇ 6= 0 OR ρ( tf ) 6= 0.

Therefore, if x 6= x∗, then ∃ t ∈ [to, tf ] such that ρ 6= 0.

Proposition 2. Consider dynamics given by (2) and a tra-

jectory described by state and control (x, v). Then, there are

always control solutions u ∈ R
M such that dJ

dλ+
≤ 0 for

some t ∈ [to, tf ].

Proof. Using dynamics of the form in (1), the expression of
the mode insertion gradient can be written as

dJ

dλ+
= ρT( f2−f1) = ρT

(

h(u−v)
)

.

Given controls u and v that generate a positive mode inser-
tion gradient, there always exist control u′ such that the
mode insertion gradient is negative, i.e. u′−v = −(u−v).
The mode insertion gradient is zero for all u ∈ R

M if the
costate vector is orthogonal to each control vector hi or if
the costate vector is zero everywhere.2

Proposition 3. Consider dynamics given by (2) and a

pair of state and control (x, v) 6=(x∗, v∗) for which dJ
dλ+

=

0 ∀ u ∈ R
M and ∀ t ∈ [to, tf ]. Then, the first-order adjoint

ρ is orthogonal (under the Euclidean inner product) to all

control vectors hi.

Proof. We rewrite (4) as

dJ

dλ+
= 0 ⇒ ρT

M
∑

i=1

hi(ui−vi) = 0

⇒

M
∑

i=1

kiwi = 0 ∀ wi,

where wi = (ui−vi) and ki = ρThi ∈ R. The linear com-
bination of the elements of k is zero for any wi, which
means k must be the zero vector. By Proposition 1, ρ 6= 0
for a trajectory described by a pair of state and control
(x, u) 6=(x∗, u∗) and, as a result, ρThi = 0 ∀ i ∈ [1, M].

Proposition 4. Consider dynamics given by (2) and a pair

of state and control (x, v) 6= (x∗, v∗) for which dJ
dλ+

= 0 ∀ u ∈

R
M and ∀ t ∈ [to, tf ]. Further assume that the control vec-

tors hi and the Lie bracket terms [hi, hj] and [g, hi], where

i, j ∈ [1, M], span the state space R
N . Then, there exist i

and j such that either ρT[hi, hj] 6= 0 or ρT[g, hi] 6= 0.

Proof. Let S = {hi, [hi, hj], [g, hi]} ∀ i, j ∈ [1, M] be a set of
vectors that span the state space R

N (span{S} = R
N ). Then,

any vector in R
N can be written as a linear combination of

the vectors in S. The first-order adjoint is an N-dimensional
vector, which is nonzero for a trajectory described by a
pair of state and control (x, u) 6=(x∗, u∗) by Proposition 1.
Therefore, it can be expressed as

ρ = c1h1+· · ·+cM hM +

M
∑

i=2

i−1
∑

j=1

c′
i,j[hi, hj]+

M
∑

i=1

c′′
i [g, hi],

(8)
where ci, c′

i, c′′
i ∈ R. Left-multiplying (8) by ρT yields

ρTρ =

M
∑

i=1

ciρ
Thi+

M
∑

i=2

i−1
∑

j=1

c′
i,jρ

T[hi, hj]+
M

∑

i=1

c′′
i ρ

T[g, hi].

Given that dJ
dλ+

= 0, and by Proposition 3, ρ is orthogonal

to all control vectors hi (which also implies that the control
vectors hi do not span R

N ), the above equation simplifies to

ρTρ =

M
∑

i=2

i−1
∑

j=1

c′
i,jρ

T[hi, hj]+
M

∑

i=1

c′′
i ρ

T[g, hi],

Because ρTρ 6= 0, there exists i, j ∈ [1, M] and a Lie
bracket term [hi, hj], or [g, hi] that is not orthogonal to the
costate ρ. That is,

∃ i, j ∈ [1, M] such that ρT[hi, hj] 6= 0 OR ρT[g, hj].

First-order needle variation methods are singular when
the mode insertion gradient is zero. When that is true, the
next result, that is the main piece required for the main theo-
retical result of this section in Theorem 1, demonstrates that
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the second-order mode insertion gradient is guaranteed to
be negative for systems that are controllable with first-order
Lie brackets, which in turn implies that a control solution
can be found with second-order needle variation methods.

Proposition 5. Consider dynamics given by (2) and a tra-

jectory described by state and control (x, v) 6= (x∗, v∗) for

which dJ
dλ+

= 0 for all u ∈ R
M and t ∈ [to, tf ]. If the control

vectors hi and the Lie brackets [hi, hj] and [g, hi] span the

state space (RN ), then there always exist control solutions

u ∈ R
M such that d2J

dλ2
+

< 0.

Proof. See Appendix B.

Theorem 1. Consider dynamics given by (2) and a trajec-

tory described by state and control (x, v) 6= (x∗, v∗). If the

control vectors hi and the Lie brackets [hi, hj] and [g, hi]
span the state space ( R

N ), then there always exists a con-

trol vector u ∈ R
M and a duration λ such that the cost

function (3) can be reduced.

Proof. The local change of the cost function (3) due to
inserted control u of duration λ can be approximated with a
Taylor series expansion

J (λ) −J (0) ≈ λ
dJ

dλ+
+

λ2

2

d2J

dλ2
+

.

By Propositions 2 and 5, either (a) dJ
dλ+

< 0 or (b) dJ
dλ+

= 0

and d2J

dλ2
+

< 0. Therefore, there always exist controls that

reduce the cost function (3) to first or second order.

4 . Control synthesis

In this section, we present an analytical solution of first- and
second-order needle variation controls that reduce the cost
function (3) to second order. We then describe the algorith-
mic steps of the feedback scheme used in the simulation
results in Section 5.

4.1. Analytical solution for second-order actions

For underactuated systems, there are states at which ρ is
orthogonal to the control vectors hi (see Proposition 3). At
these states, control calculations based only on first-order
sensitivities fail, whereas controls based on second-order
information still have the potential to decrease the objective
provided that the control vectors and their Lie brackets span
the state space (see Theorem 1). We use this property to
compute an analytical synthesis method that expands the set
of states for which individual actions that guarantee descent
of an objective function can be computed.

Consider the Taylor series expansion of the cost around
control duration λ. Given the expressions of the first- and
second-order mode insertion gradients, we can write the
cost function (3) as a Taylor series expansion around the
infinitesimal duration λ of inserted control u:

J ( λ) ≈ J (0) +λ
dJ

dλ+
+

λ2

2

d2J

dλ2
+

. (9)

The first- and second-order mode insertion gradients used
in the expression are functions of the inserted control u in
(2). Equation (9) is quadratic in u and, for a fixed λ, has
a unique solution that is used to update the control actions.
Controls that minimize the Taylor expansion of the cost will
have the form

u∗(t) = argmin
u

J (0) +λ
dJ

dλ+
+

λ2

2

d2J

dλ2
+

+
1

2
‖u‖2

R, (10)

where the MIH has both linear and quadratic terms in u. We
compute the minimizer of (10) to be

u∗(t) = [
λ2

2
0+R]−1 [

λ2

2
1+λ( −hTρ) ], (11)

where 1 : R 7→ R
M and 0 : R 7→ R

M×M are respectively
the first- and second-order derivatives of d2J/dλ2

+ with
respect to the control u (see Appendix B). These quantities
are given by

1 ,

[
[

hT
(

�T+�
)

h+2hT·(
n

∑

k=1

(Dxhk) ρk)T
]

v

+(Dxg·h)Tρ−

( n
∑

k=1

(Dxhk) ρk

)

·g+hTDxlT
]

0 ,

[

hT
(

�T+�
)

h+hT·

( n
∑

k=1

(Dxhk) ρk

)T

+

n
∑

k=1

(Dxhk) ρk ·h

]

.

The parameter R, a positive-definite matrix, denotes a
metric on control effort.

The existence of control solutions in (11) depends on

the inversion of the Hessian H = λ2

2 0+R. To practi-
cally ensure H is positive definite, we implement a spectral
decomposition on the Hessian H = VDV−1, where matri-
ces V and D contain the eigenvectors and eigenvalues of
H , respectively. We replace all elements of the diagonal
matrix D that are smaller than ε with ε to obtain D̄ and
replace H with H̄ = VD̄V−1 in (11). We prefer the spec-
tral decomposition approach to the Levenberg–Marquardt
method (H̄ = H+κI � 0), because the latter affects all
eigenvalues of the Hessian and further distorts the second-
order information. At saddle points, we set the control equal
to the eigenvector of H that corresponds to the most nega-
tive eigenvalue in order to descend along the direction of
most negative curvature (Boyd and Vandenberghe, 2004;
Murray, 2010; Nocedal and Wright, 2006; Schnabel and
Eskow, 1990).
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Algorithm 1

1. Simulate states and costates with default dynamics f1 over a
time horizon T

2. Compute optimal needle variation controls
3. Saturate controls
4. Use a line search to find control duration that ensures reduc-

tion of the cost function (3)3

Fig. 2. The steps of the controller outlined by Algorithm 1. Using

the default control, the states and co-states are forward-simulated

for the time horizon [to, to+T]. The optimal control response is

computed from (11), and saturated appropriately. At the end, the

algorithm determines the finite duration of the inserted single

action, evaluated at an application time τ , with a line search.

Synthesis based on (11) provides controls at time t that
guarantee to reduce the cost function (3) for systems that are
controllable using first-order Lie brackets. Control solutions
are computed by forward simulating the state over a time
horizon T and backward simulating the first- and second-
order costates ρ and �. As we see next, this leads to a very
natural, and easily implementable, algorithm for apply-
ing cost-based feedback while avoiding iterative trajectory
optimization.

4.2. Algorithmic description of the control

synthesis method

The second-order controls in (11) are implemented in a
series of steps shown in Algorithm 1 and visualized in
Figure 2. We compare first- and second-order needle vari-
ation actions by implementing different controls in Step 2

of Algorithm 1. For the first-order case, we implement con-
trols that are the solution to a minimization problem of the
first-order sensitivity of the cost function (3) and the control
effort

u∗(t) = min
u

1

2

(
dJ1

dλ+
i

−αd

)2

+
1

2
‖u‖2

R

=( 3+RT)−1 ( 3v+hTραd) , (12)

where 3 , hTρρTh and αd ∈ R
− expresses the desired

value of the mode insertion gradient term (see, for exam-
ple, Mamakoukas et al., 2016). Typically, αd = γ Jo, where
Jo is the cost function (3) computed using default dynamics
f1. For second-order needle variation actions, we compute
controls using (11). As Figure 2 indicates, the applied actu-
ation is the saturated value of the control response of either
(11) or (12), evaluated at the application time τ .

Although we do not show it in this paper, it is shown
in Ansari and Murphey (2016) that the first-order needle
variation control solutions (12) retain a descent direction
after saturation. This result was extended in Mamakoukas
et al. (2018) to show that the entire control signal over the
time horizon, and not a needle action, remains a descent
direction when saturated by an arbitrary amount. Although
we have not yet formally proved a similar property for the
second-order needle variation controls (11), one can test
and identify whether the saturated controls would decrease
the cost function before applying any actuation. In addi-
tion, the results of this work rely on the sign and not the
magnitude of the control solutions, suggesting that the sat-
urated second-order solutions in (11) also provide a descent
direction.

Further, needle variation actuation as shown in Figure 2
may be practically infeasible or at least problematic for
motors due to the abrupt changes in the control. There are
two remedies to this issue. First, introducing additional filter
states associated with the control can constraint the changes
in actuation (Fan and Murphey, 2016). Second, one can
show that the entire curve of the first-order needle variation
solution is a descent direction (Mamakoukas et al., 2018).
Assuming the same is true for the second-order solutions as
well, one could either apply part of the continuous control
solution around the time of application τ or filter the dis-
continuous actuation in hardware and still provide descent
with more motor-friendly actuation.

4.3. Convergence in the presence of obstacles

We use Theorem 1 to show that the proposed needle-
variation controller will always converge to the global
minimizer for convex functions. This statement is true
independent of the presence of obstacles.

Theorem 2. Consider dynamics given by (2), a trajec-

tory described by state and control (x, v) 6=(x∗, v∗). Let x̃k

describe the trajectory generated after k iterations of Algo-

rithm 1. Further let x ∈ Xfree∀ t ∈ [to, tf ], where Xfree ⊂ X
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denotes the collision-free part of the state-space. Consider

an objective (3) that satisfies Assumption 2 and whose run-

ning cost term penalizes collisions, such that J (x̃k) > J (x) if

∃ t ∈ [to, tf ] where x̃ /∈ Xfree. If the objective J (x) is convex

with respect to the state x in the unconstrained sense and

the control vectors hi and the Lie brackets [hi, hj] and [g, hi]
span the state space ( R

N ), then the sequence of solutions

{x̃k} generated by Algorithm 1 converges to x∗. Further,

x̃k ∈ Xfree∀ k ∈ R
+.

Proof. Algorithm 1 constructs control responses out of the
first- and second-order mode insertion gradients. By exten-
sion of Theorem 1, it can guarantee to reduce the objec-
tive with each iteration (for some control u of duration λ).
Therefore,

J (x̃k) > J (x̃k+1) ≥ Jmin, (13)

where Jmin = J (x∗) is the (only) minimizer of the convex
objective. It follows that,

lim
k→∞

J (x̃k) = Jmin. (14)

Further, assume that there exists t ∈ [to, tf ] and k ∈ R
+

such that x̃k /∈ Xfree. Then J (x̃k) > J (x), which contradicts
(13). Using proof by contradiction, we conclude that

x̃k ∈ Xfree ∀ t ∈ [to, tf ], ∀ k ∈ R
+. (15)

Assuming that a collision-free path exists between the agent
and the target, it is straightforward that the minimizer trajec-
tory is the target’s location. Therefore, from (14) and (15),
Algorithm 1 generates a sequence {x̃k} that converges to the
target safely.4

With regards to Theorem 2, we should alert the reader
that Algorithm 1 may not guarantee collision avoidance if
the default trajectory is not collision-free, that is if there
exists t ∈ [to, tf ] such that x /∈ Xfree. Further, the result of
Theorem 2 can generalize to non-convex functions that have
only one minimum.

4.4. Comparison with alternative optimization

approaches

Algorithm 1 differs from controllers that compute control
sequences over the entire time horizon to locally minimize
the cost function. Rather, the proposed scheme utilizes the
time-evolving sensitivity of the objective to an infinitesimal
switch from v to u and searches a 1D space for a finite dura-
tion of a single action that will optimally improve the cost.
It does so using a closed-form expression and, as a result,
avoids the expensive iterative computational search in high-
dimensional spaces, although it may still get closer to the
optimizer with one iterate.

Specifically, in terms of computational effort, Algorithm
1 computes two n×1 (state (2) and first-order adjoint (5)

variables) and one n×n (second-order adjoint (7)) differ-
ential equations and searches. All simulations presented in
this paper are able to run in real time, including the final
13D system. However, real-time execution is not guaran-
teed for higher-dimensional systems. Nevertheless, the pre-
sented algorithm runs faster than the iLQG method for the
simulations considered here.

Further, compared with traditional optimization algo-
rithms such as iLQG, needle variation solutions exist glob-
ally, demonstrate a larger region of attraction and have a
less complicated representation on Lie groups (Fan and
Murphey, 2016). These traits naturally transfer to second-
order needle controls (11) that also contain the first-order
information present in (12). In addition, as this paper
demonstrates, the suggested second-order needle variation
controller has formal guarantees of descent for systems
that are controllable with first-order Lie brackets, which, to
the best of the authors’ knowledge, is not provided by any
alternative method.

Given these benefits, the authors propose second-order
needle variation actions as a complement to existing
approaches for time-sensitive robotic applications that may
be subject to large initial error, Euler angle singularities, or
fast-evolving (and uncertain) objectives. Next, we imple-
ment Algorithm 1 using first- or second-order needle vari-
ation controls (shown in (12) and (11), respectively) to
compare them in terms of convergence success on various
underactuated systems.

5 . Simulation results

The proposed synthesis method based on (11) is imple-
mented on three underactuated examples: the differential
drive cart, a 3D kinematic rigid body, and a dynamic model
of an underwater vehicle. The kinematic systems of a 2D
differential drive and a 3D rigid body are controllable using
first-order Lie brackets of the vector fields and help demon-
strate Theorem 1. The underactuated dynamic model of
a 3D rigid body serves to compare controls in (11) and
(12), as well as make comparisons with other control tech-
niques, in a more sophisticated environment. In all simu-
lation results, we start with default control v = 0 and an
objective function of the form

J (x(t)) =
1

2

∫ tf

to

‖Ex(t) −Exd(t) ‖2
Q dt+

1

2
‖Ex(tf ) −Exd(tf ) ‖2

P1
,

where Exd is the desired state trajectory, and Q = QT ≥ 0,
P1 = PT

1 ≥ 0 are metrics on state error.

5.1. 2D kinematic differential drive

We use the differential drive system to demonstrate that
first-order controls shown in (12) that are based only on
the first-order sensitivity of the cost function (3) can be
insufficient for controllable systems, contrary to controls
shown in (11) that guarantee decrease of the objective for
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Fig. 3. Differential drive using first- and second-order needle variation actions, iLQG, and DDP, from left to right. Snapshots of the

system are shown at t = 0, 2.5, 5, 7.5, 10, and 12.5 s. The target state is [xd , yd , θd] = [1000 mm, 1000 mm, 0].

Fig. 4. (a) Plot of the running state cost and (b) plot of the integrated (cumulative) cost, including the control cost. DDP and iLQG

obtain the same cumulative cost, with slightly different trajectories (see Figure 3). Second-order needle variation actions demonstrate

improved convergence to the target over DDP and iLQG, despite optimizing over one single action at each iteration.

systems that are controllable using first-order Lie brackets
(see Theorem 1).

The system states are its coordinates and orientation,
given by s = [x, y, θ ]T, with kinematic (g = 0) dynamics

f = r





cos(θ ) cos(θ )
sin(θ ) sin(θ )

1
L

− 1
L





[

uR

uL

]

,

where r = 3.6 cm and L = 25.8 cm denote the wheel
radius and the distance between them, and uR and uL are
the right and left wheel control angular velocities, respec-
tively (these parameter values match the specifications of

the iRobot Roomba). The control vectors h1, h2 and their

Lie bracket term [h1, h2] = 2 r2

L

[

−sin(θ ) , cos(θ) , 0
]T

span
the state space (R3). Therefore, from Theorem 1, there
always exist controls that reduce the cost to first or second
order.

Figures 3 and 4 demonstrate how first- and second-
order needle variations, iLQG, and DDP (Todorov and Li,
2005; Tassa et al., 2014) perform on reaching a nearby
target. We implement the iLQG and DDP algorithms to
generate offline trajectory optimization solutions using pub-
licly available software.5 Actions based on first-order nee-
dle variations (12) do not generate solutions that turn the
vehicle, but rather drive it straight until the orthogonal dis-
placement between the system and the target location is
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Fig. 5. Convergence success rates of first- (12) and second-order

(11) needle variation controls for the kinematic differential drive

model. Simulation runs: 1000.

minimized. Actions based on second-order needle varia-
tions (11), on the other hand, converge successfully. The
solutions differ from the trajectories computed by iLQG and
DDP, despite using the same simulation parameters.

We note the fact that, in addition to the computational
benefits, single-action approaches appear to be rich in infor-
mation and perform comparably to offline schemes that
attempt to minimize the objective by computing differ-
ent control responses over the entire horizon. Given that
the solutions of iLQG and DDP are very similar, and the
fact that DDP is slower than iLQG due to expanding the
dynamics to second order, we use only the iLQG algorithm
as a means of comparison for the rest of the simulations
presented in this work. The results in Figure 3 based on
second-order needle variations are generated in real time in
MATLAB and approximately 40 times faster than the iLQG
implementation.

Figure 5 shows a Monte Carlo simulation that compares
convergence success using first- and second-order needle
variations controls shown in (12) and (11), respectively,
and iLQG. We sampled over initial coordinates x0, y0 ∈
[−1500, 1500] mm using a uniform distribution and keep-
ing only samples for which the initial distance from the
origin exceeded L/5; θ0 = 0 for all samples. Successful
samples are defined by being within L/5 from the origin
with an angle θ < π/12 within 60 seconds using feed-
back sampling rate of 4 Hz. Results are generated using
Q = diag(10, 10, 1000), P1 = diag(0, 0, 0), T = 0.5 s,
R = diag(100, 100) for (12), R = diag(0.1, 0.1) for (11),
γ = −15, λ = 0.1, and saturation limits on the angular
velocities of each wheel ±150/36 mm/s for each control
approach.6 As shown in Figure 5, the system always con-
verges to the target using second-order needle variation
actions, matching the theory.

5.1.1. Convergence with obstacles. Next, we illustrate the
performance of the algorithm in the presence of obstacles.
In all simulations, obstacles are considered in the objective
in the form of a penalty function. In Figure 6, we test the
system in the same task as Figure 3 in the presence of two
obstacles, indicated with red spheres. In comparison with
Figure 3f, it is worth noting the two angle peaks, corre-
sponding to each obstacle. After passing the obstacles, the
system recovers the same angle profile.

Figure 7 shows more complicated maneuvers using con-
trols from (11). The controller, without relying on a motion
planner, is able to generate collision-free trajectories and
safely converge to the target in all cases. These simula-
tions also demonstrate another aspect of Algorithm 1. The
differential drive always drives up to an obstacle and then
narrowly maneuvers around, instead of preparing a turn ear-
lier on. This behavior is to be expected of needle variation
actions that instantly reduce the cost.

We next use the more complicated scenario of Figure
7d to evaluate the second-order expansion of the objec-
tive, shown in (9), across the state-space (see Figure 8).
The first- and second-order mode insertion gradients are
computed based on the second-order needle variation con-
trols from (11). States are sampled in the space for x and
y in increments of 5 mm, with θ = 0 everywhere. These
results correspond to λ = 0.001. The horizontal disconti-
nuity that appears around y = 750 mm is believed to be due
to the effect of the penalty functions. As Figure 8 indicates,
the change in cost is always negative, verifying Theorem 1,
even in the presence of obstacles.

We further use a Monte Carlo simulation of 500 trials
on the initial conditions to test convergence success (Fig-
ure 9 and Extension 1). We sample initial conditions [x, y]
from a uniform distribution in [−200 mm, 1000 mm] ×
[−400 mm, 800 mm], where θo = 0 in all cases. All trials
converged within 25 seconds.

Last, we test the differential drive in the presence of mov-
ing obstacles (Figure 10 and Extension 2). The controller
is again able to avoid collision and converge to the target,
without relying on additional motion planning techniques.
The feedback rate used is 20 Hz and the trajectory of the
obstacles is known to the agent throughout the time horizon.
In these simulations, T = 0.3 s.

5.2. 3D kinematic rigid body.

The underactuated kinematic rigid body is a 3D example
of a system that is controllable with first-order Lie brack-
ets. To avoid singularities in the state space, the orienta-
tion of the system is expressed in quaternions (Kuipers,
1999; Titterton and Weston, 2004). The states are s =
[x, y, z, q0, q1, q2, q3], where b = [x, y, z] are the world-
frame coordinates and q = [q0, q1, q2, q3] are unit quater-
nions. Dynamics f = [ḃ, q̇]T are given by

ḃ = Rqv (16)
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Fig. 6. (a) Differential drive using second-order needle variation actions in the presence of obstacles. (b) The deviation from the nominal

trajectory that is the solution to the no-obstacle task. The system performs two maneuvers to avoid each obstacle. These are evident in

the angle deviation (compare with Figure 3c).

q̇ =
1

2







−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0







ω, (17)

where v and ω are the body frame linear and angular veloc-
ities, respectively (da Cunha, 2015). The rotation matrix for
quaternions is

Rq =






q2
0+q2

1−q2
2−q2

3 2( q1q2−q0q3) 2( q1q3+q0q2)

2( q1q2+q0q3) q2
0−q2

1+q2
2−q2

3 2( q2q3−q0q1)

2( q1q3−q0q2) 2( q2q3+q0q1) q2
0−q12−q2

2+q2
3




 .

The system is kinematic: v = F and ω = T , where
F = (F1, F2, F3) and T = (T1, T2, T3) describe the surge,
sway, and heave input forces and the roll, pitch, and yaw
input torques, respectively. We render the rigid-body under-
actuated by removing the sway and yaw control authorities
(F2 = T3 = 0).

The four control vectors span a 4D space. First-order Lie
bracket terms add two more dimensions to span the state
space (R6) (the fact that there are seven states in the model
of the system is an artifact of the quaternion representation;
it does not affect controllability).

The vectors h1, h2, and [h2, h3] span R
3 associated with

the world frame coordinates ẋ, ẏ, and ż. Similarly, vectors
h3, h4, and [h4, h3] span R

3 associated with the orientation.
Thereby, control vectors and their first-order Lie brackets
span the state space and, from Theorem 1, optimal actions
shown in (11) will always reduce the cost function (3).

To verify this prediction, we present the convergence
success of the system on 3D motion. Using Monte Carlo
sampling with uniform distribution, initial locations are
randomly generated such that x0, y0, z0 ∈ [−50, 50] cm
keeping only samples for which the initial distance from

the origin exceeded 6 cm. We regard as a convergence suc-
cess each trial in which the rigid body is within 6 cm to
the origin by the end of 60 seconds at any orientation.
Results are generated at a sampling rate of 20 Hz using
Q = 0, P1 = diag(100, 200, 100, 0, 0, 0, 0), T = 1.0 s,
γ = −50,000, λ = 10−3, R = 10−6 diag(1, 1, 100, 100) for
(11), and R = diag(10, 10, 1000, 1000) for controls in (12).
Controls are saturated at ±10 cm/s for the linear velocities
and ±10 rad/s for the angular ones. Using 280 simulations
over 24 seconds, 80% satisfy the success criterion within 12
seconds and 100% of trajectories satisfy the success crite-
rion within 20 seconds. None of the simulations converge
for the first-order needle variation controls, because they
cannot displace the system in the ŷ direction.

5.3. Underactuated dynamic 3D fish

We represent the three dimensional rigid body with states
s = [b, q, v, ω]T, where b = [x, y, z] are the world-frame
coordinates, q = [q0, q1, q2, q3] are the quaternions that
describe the world-frame orientation, and v = [vx, vy, vz]
and ω = [ωx, ωy, ωz] are the body-frame linear and angular
velocities. The rigid-body dynamics are given by ḃ and q̇

shown in (16) and (17) and

Mv̇ = Mv×ω+F

J ω̇ = Jω×ω+T ,

where the (experimentally determined) effective
mass and moment of inertia of the rigid body
are given by M = diag(6.04, 17.31, 8.39) g and
J = diag( 1.57, 27.78, 54.11) g·cm2, respectively. This
example is inspired by work in Mamakoukas et al. (2016)
and Postlethwaite et al. (2009) and the parameters used for
the effective mass and moment of inertia of a rigid body
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Fig. 7. Trajectories of the differential drive in the presence of obstacles. Figure 7d shows a comparison of the solution to the trajectories

generated when considering only a) obstacle 1 and b) obstacles 1 and 2, both of which collide with the obstacles. Simulations run in

real time in MATLAB.

Fig. 8. Cost reduction 1J , modeled after (9), for sampled x and y in the presence of obstacles, given second-order needle variation

controls. The first- and second-order mode insertion gradients are evaluated with the controls from (11). Figures (a) and (b) are identical,

but shown over a different range to illustrate that even when looking at small variations of the first-order mode insertion gradient,

the second-order method is reliably negative. The bright vertical line in (b) is vertically aligned with the target located at [400 mm,

1000 mm], where first-order solutions are singular. No data are sampled inside the white circles, as these indicate the infeasible occupied

region.
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(a) (b)

Fig. 9. Performance of second-order needle variation actions in the presence of static obstacles. The controller is able to converge to

the target for all 500 trials and avoid collisions. (a) An interpolated heat map that indicates the time to convergence as a function of

initial position. (b) The trajectories followed by the center of mass of the agent. The gray area indicates the collision space, taking into

account the width of the differential drive (the simulation runs in real time in MATLAB). For visualization, see Extension 1.

Fig. 10. Performance of second-order needle variation actions in the presence of three moving obstacles. The left figure shows a

snapshot of the simulation; the right figure plots the distance of the agent from each object and the target, where the gray area indicates

the threshold minimum distance to avoid collision with the obstacles. The controller converges to the target in a collision-free manner

(the simulation runs in real time in MATLAB). For visualization, see Extension 2.

correspond to measurements of a fish. The control inputs
are F2 = T3 = 0 and F3 ≥ 0.

The control vectors only span a 4D space and, since
they are state-independent, their Lie brackets are zero vec-
tors. However, the Lie brackets containing the drift vector
field g (that also appear in the MIH expression) add from
one to four (depending on the states) independent vectors
such that control solutions in (11) guarantee decrease of
the cost function (3) for a wider set of states than controls
in (12).

Simulation results based on Monte Carlo sampling are
shown in Figure 11. Initial coordinates x0, y0, z0 are gen-
erated using a uniform distribution in [−100, 100] cm,
discarding samples for which the initial distance to the

origin is less than 15 cm. Successful trials are those
for which, within a simulation window of 60 sec-
onds, the system approach within 5 cm to the origin
(at any orientation) and whose magnitude of the lin-
ear velocities is, at the same time, less than 5 cm/s.
Results are generated at a sampling rate of 20 Hz using
T=1.5 s, P1=0, Q= 1

200 diag(103,103,103,0,0,0,0,1,1,1,2·

103,103,103), γ=−5, R=diag(103,103,106,106) for (12),
R= 1

2 diag(10−6,10−6,10−3,10−3) for (11), and λ=10−4. The
same control saturations (F1 ∈ [−1, 1] mN, F3 ∈ [0, 1] mN,
T1 ∈ [−0.1, 0.1] µN·m, and T2 ∈ [−0.1, 0.1] µN·m) are
used for all simulations of the dynamic 3D fish. As shown
in Figure 11, controls computed using second-order needle
variations converge faster than those based on first-order
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(a) (b)

Fig. 13. Tracking performance of the same system in the presence of +10 cm/s ŷ fluid drift. The yellow system corresponds to first-

order needle variation actions; the red system corresponds to second order. The target trajectory (red ball) is indicated with white traces

over a 10-second simulation. Figure 13b shows the error distance as a function of time, clearly demonstrating the advantage of the

second-order approach. Animation of these results is available in Extension 4.

Fig. 11. Convergence success rates of first- and second-order nee-

dle variation controls ((12) and (11), respectively) and iLQG for

the underactuated dynamic vehicle model. Simulation runs: 280.

Fig. 12. Snapshots of a parallel displacement maneuver using an

underactuated dynamic vehicle model with second-order controls

given by (11); first-order solutions (12) are singular throughout the

simulation. Animation of these results is available in Extension 3.

needle variations, and 97% of trials converge within 60
seconds.

Both methods converge over time to the desired location;
as the dynamic model of the rigid body tumbles around and
its orientation changes, possible descent directions of the
cost function (3) change and the control is able to push
the system to the target. Controls for the first-order nee-
dle variation case (12) are singular for a wider set of states
than second-order needle variation controls (11) and, for
this reason, they benefit more from tumbling. In a 3D par-
allel maneuver task, only second-order variation controls
(11) manage to provide control solutions through successive
heave and roll inputs, whereas controls based on first-order
sensitivities (12) fail (see Figure 12 and Extension 3).

As controls in (11) are nonsingular for a wider subset of
the configuration state space than the first-order solutions
in (12), they will provide more actions over a period of
time and keep the system closer to a time-varying target.
Figure 13a (and Extension 4) demonstrates the superior
trajectory tracking behavior of controls based on (11) in
the presence of +10 cm/s ŷ fluid drift. The trajectory of
the target is given by [x, y, z]=[cos( 3t

10 ) (20+10cos( t
5 )),

sin( 3t
10 ) (20 + 10 cos( t

5 )), 10 sin( 2t
5 )], with T=2 s,

λ=0.01, Q=diag(10,10,10,0,0,0,0,0,0,0,1,1,0.1),
γ=−50,000, P1=diag(10,10,10,0,0,0,0,0,0,0,0,0,0), R=
diag(103,103,106,106) for (12), and R=diag(10,10,104,104)
for (11). The simulation runs in real time using a C++
implementation on a laptop with Intel® CoreTM i5-6300HQ
CPU @2.30 GHz and 8 GB RAM.

The drift is known for both first- and second-order sys-
tems and accounted for in their dynamics in the form of
ḃ = ḃ + ḃdrift, where ḃdrift is a vector that points in the
direction of the fluid flow. Simulation results demonstrate
superior tracking of second-order needle variation controls
that manage to stay with the target, whereas the system that
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corresponds to first-order needle variation controls is being
drifted away by the flow.

We also tested convergence success of the +10 cm/s
ŷ drift case. Initial conditions x, y, z are sampled uni-
formly from a 30 cm radius from the origin, discard-
ing samples for which the initial distance is less than
5 cm. We consider samples to be successful if, dur-
ing 60 seconds of simulation, they approached the ori-
gin within 5 cm. Out of 500 samples, controls based
on second-order variations converged 91% of the time
(with average convergence time of 5.87 s), compared
with 89% for first-order actions (with average conver-
gence time of 9.3 s). Simulation parameters are T = 1 s,
γ = −25,000, Q = 10−3 diag(10,10,10,0,0,0,0, 1, 1, 1,
1,1,1), P1 = diag (100,100,100,0,0,0,0, 1

2 , 1
2 , 1

2 , 0, 0, 0),
λ = 10−4, R = diag(0.1, 0.1, 104, 104) for (12), and R =
1
2 diag(10−5, 10−5, 1, 1) for (11).

6. Conclusion

This paper presents a needle variation control synthesis
method for nonlinearly controllable systems that can be
expressed in control affine form. Control solutions prov-
ably exploit the nonlinear controllability of a system and,
contrary to other nonlinear feedback schemes, have for-
mal guarantees with respect to decreasing the objective. By
optimally perturbing the system with needle actions, the
proposed algorithm avoids the expensive iterative compu-
tation of controls over the entire horizon that other NMPC
methods use and is able to run in real time for the systems
considered here.

Simulation results on three underactuated systems com-
pare first-order needle variation controls, second-order nee-
dle variation controls, and iLQG controls and demonstrate
the superior convergence success rate of the proposed
feedback synthesis. Because second-order needle variation
actions are non-singular for a wider set of the state space
than controls based on first-order sensitivity, they are also
more suitable for time-evolving objectives, as demonstrated
by the trajectory tracking examples in this paper. Second-
order needle variation controls are also calculated at little
computational cost and preserve control effort. These traits,
demonstrated in the simulation examples of this paper, ren-
der feedback synthesis based on second- and higher-order
needle variation methods a promising alternative feed-
back scheme for underactuated and nonlinearly controllable
systems.

In the future, we wish to generalize Theorems 1 and 2
to guarantee solutions for all controllable systems. Further,
we are interested in showing that the second-order control
responses (11) can be applied over the entire horizon, and
not only as a needle action. This would create a second-
order continuous feedback scheme like iLQG, but with the
formal guarantees for controllable systems. To test the fea-
sibility of the algorithm, we are planning on conducting
underwater experiments with a fish robot.
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Notes

1. In this work, we consider the second-order sensitivity with
respect to an action centered at one single application time
τ . It is also possible to consider the second-order sensitivity
with respect to two application times τi and τj in the same
iteration. Assuming that the entire control curve is a descent
direction over the time horizon for second-order needle vari-
ation solutions, as we have proved is the case for first-order
needle variation methods in recently submitted work (Mamak-
oukas et al., 2018), multiple second-order needle actions at
different application times would still decrease the objective.
On the other hand, searching for two application times would
slow down the algorithm and was not preferred in this work.

2. If the control vectors span the state space R
N , the costate

vector ρ ∈ R
N cannot be orthogonal to each of them. There-

fore, for first-order controllable (fully actuated) systems, there
always exist controls for which the cost can be reduced to first
order.

3. The application time of the inserted action is typically chosen
to correspond to the most negative first-order mode insertion
gradient.

4. Although control responses are constructed from a second-
order Taylor series approximation of the objective, the iterated
sequence is guaranteed to decrease the real cost function at
each iteration. If the real cost function is convex with respect
to the state (in the unconstrained sense), the iterated sequence
will converge towards the only minimizer. Using a sufficient
descent condition, the algorithm is guaranteed to converge
to a point where the unconstrained derivative of the objec-
tive is zero (i.e. DxJ (x) = 0), which, from Assumption 4, only
happens at the global minimizer.

5. Available at http://www.mathworks.com/matlabcentral/file
exchange/52069-ilqg-ddp-trajectory-optimization.

6. The metric on control effort is necessarily smaller for (11),
due to parameter λ. The parameter is chosen carefully to
ensure that control solutions from (11) and (12) are compa-
rable in magnitude.
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Appendix A Index to multimedia extensions

Archives of IJRR multimedia extensions published prior
to 2014 can be found at http://www.ijrr.org, after 2014
all videos are available on the IJRR YouTube channel at
http://www.youtube.com/user/ijrrmultimedia

Table of Multimedia Extension

Extension Media type Description

1 Video Collision-free convergence in the
presence of static obstacles from ran-
dom initial conditions.

2 Video Collision-free convergence in the
presence of moving obstacles.

3 Video Parallel maneuver of the dynamic 3D
fish.

4 Video Underactuated tracking of the
dynamic 3D fish in the presence of
drift.

Appendix B Derivations and proofs

A.1 Derivation of the MIH

Consider switched systems that are defined by dynamics

ẋ(t) = f
(

x(t) , 3, t
)

=
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, τ1+λ1 ≤ t < τ2
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, τ2 ≤ t < τ2+λ2

f1
(

x(t) , t
)

, τ2+λ2 ≤ t < τ3

...
...

f1
(

x(t) , t) , τL+λL ≤ t < TF

(18)

subject to: x(T0) = x0,

where T0 is the initial time, TF is the final time, x0 : R 7→
R

N is the initial state, L is the number of injected dynam-
ics, τ = {τ1, τ2, . . . , τL} ∈ R

L is a monotonically increasing
set of switching times, 3 = {λ1, λ2, . . . , λL} ∈ R

L is a set of
control durations, f1 : R 7→ R

N specify the default dynam-
ics, and fi : R 7→ R

N describe the ith injected dynamics. The
switching times are assumed to be fixed.

We note that, whereas the system dynamics f depend on
the set of control durations 3, the same is not true for the
individual switch mode dynamics fi. In addition, we refer
to individual elements in the set 3 as either 3i or λi. We
measure the performance of the system with the integral of
the Lagrangian, `(·), and a terminal cost m(·), similar to (3):

J (3) =

∫ TF

T0

`(x(t)) dt+m(x(TF)) . (19)

We can re-write the dynamics using step functions, such
that

f (x(t) , 3, t) =
[

1(t−T0) −1(t−τ−
1 )

]

f1
(

x(t) , t
)

+
[

1(t−τ+
1 ) −1

(

t−(τ1+λ1)−
)]

f2
(

x(t) , t
)

+
[

1
(

t−(τ1+λ1)+
)

−1(t−τ−
2 )

]

f1
(

x(t) , t
)

+. . .

+
[

1(t−(τL−1+λL−1)+ )−1(t−τ−
L )

]

f1
(

x(t) , t
)

+
[

1(t−τ+
L ) −1

(

t−(τL+λL)−
)]

fL
(

x(t) , t
)

+
[

1
(

t−(τL+λL)+
)

−1(t−TF)
]

f1
(

x(t) , t
)

The superscripts + and − help avoid ambiguity at the
switching times. We use directional derivatives to differ-
entiate, where the slot derivative DiF( ·, ·) is the partial
derivative of a function F with respect to its ith argument.
That is, DxF indicates the derivative of F with respect to
x and is the same as ∂F

∂x
. Further, Di, jF( ·, ·) denotes the

second partial of a function F with respect to its first and
second arguments. The step-function form of the dynamics
makes it straightforward to compute the partial derivatives
D1f

(

x(t) , 3, t
)

and D2f
(

x(t) , 3, t
)

. Specifically,
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D1f
(

x(t) , 3, t
)

=
[

1(t−T0) −1(t−τ−
1 )

]

D1f1
(

x(t) , t
)

+
[

1(t−τ+
1 ) −1

(

t−(τ1+λ1)−
)]

D1f2
(

x(t) , t
)

+
[

1
(

t−(τ1+λ1)+
)

−1(t−τ−
2 )

]

D1f1
(

x(t) , t
)

+. . .

+
[

1(t−(τL−1+λL−1)+ ) −1(t−τ−
L )

]

D1f1
(

x(t) , t
)

+
[

1(t−τ+
L ) −1

(

t−(τL+λL)−
)]

D1fL
(

x(t) , t
)

+
[

1
(

t−(τL+λL)+
)

−1(t−TF)
]

D1f1
(

x(t) , t
)

and

D2f
(

x(t) , 3, t
)

=
{

δ
(

t−(τk+λk)−
)

fk(x(t) , t)

−δ
(

t−(τk+λk)+
)

f1(x(t) , t)
}L

k=1
, (20)

where δ(·) is the Dirac delta function. Using variational
calculus,

DJ (3)·θ =

∫ TF

T0

D`
(

x(r)
)

·z(r) dr+Dm
(

x(TF)
)

·z(TF) ,

(21)

where z(t) : R 7→ R
N×1 is the variation of x(t) due to the

variation, θ , in 3. In addition,

ż(t) =
∂

∂t

∂x(t)

∂3
=

∂

∂3

∂x(t)

∂t
=

∂

∂3
ẋ(t) =

∂

∂3
f
(

x(t) , 3, t
)

= D1f
(

x(t) , 3, t
)

·z(t) +D2f
(

x(t) , 3, t
)

·θ

subject to: z(0) =
∂

∂3
x(0) = 0.

Define A(t) , D1f
(

x(t) , 3, t
)

and B(t) , D2f
(

x(t) , 3, t
)

.
Therefore, ż is

ż(t) = A(t) ·z(t) +B(t) ·θ

subject to: z(0) = 0

The above differential equation has the solution

z(t) =

∫ t

T0

8(t, r) B(r) ·θ dr, (22)

where 8(t, r) is the state transition matrix corresponding to
A(t). Substituting z(·) in DJ (3) ·θ ,

DJ (3) ·θ =

∫ TF

T0

D`
(

x(r)
)
∫ r

T0

8(r, s) B(s) ·θ ds dr

+Dm
(

x(TF)
)
∫ TF

T0

8(TF , s) B(s) ·θ ds

Switching the order of integration in the first-integral,

DJ (3) ·θ =

∫ TF

T0

∫ TF

s

D`
(

x(r)
)

8(r, s) B(s) ·θ dr ds

+

∫ TF

T0

Dm
(

x(TF)
)

8(TF , s) B(s) ·θ ds

=

∫ TF

T0

[ ∫ TF

s

D`
(

x(r)
)

8(r, s) dr

︸ ︷︷

+

∫ TF

T0

Dm
(

x(TF)
)

8(TF , s)
]

︷︷ ︸

ρ(s)T

B(s) ds·θ .

Then,

ρ(t) = 8( TF , t)T Dm(x(TF))T+

∫ TF

t

8(r, t)T D`(x(r))T dr,

where ρ(t) is the solution to the backwards differential
equation:

ρ̇(t) = −D1f (x(t) , 3, t)T ρ−D`(x(t))

subject to: ρ(TF) = Dm(x(TF))T .
(23)

To avoid confusion, it is important to explain the notation
used in the remaining of the derivation. We use θ to repre-
sent first-order and η to represent second-order perturba-
tions to control durations 3, respectively. We use subscripts
to refer to the perturbation acting on a specific (single) dura-
tion. For example, θi indicates the perturbation that takes
place with respect to the ith control duration, λi. We index
the order of perturbations with a superscript, so that θ j indi-
cates the jth (in order) perturbation to the set of control
durations 3. Therefore, θ2

1 indicates the perturbation that
acts on the first control duration λ1 and that is associated
with the second perturbation.

We write

∂

∂3
(DJ (3) ·θ1) =

∂

∂3
(

∫ TN

T0

D`(x(r)) ·z1(r) dr

+Dm(x(TF)) ·z1(TF))

and, using the product rule, we compute

D2J (3) ·(θ1, θ2) +DJ (3) ·η =

∫ TF

T0

D2`(x(r))

·
(

z1(r) , z2(r)
)

+D`(x(r)) ·ζ (r) dr

+D2m
(

x(TF)
)

·( z1(TF) , z2(TF))

+Dm
(

x(TF) ·ζ (TF) , (24)

where θ1 and θ2 are two first-order variations of 3, η is a
second-order variation of 3 and ζ (t) is the second-order
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variation of x(t). Parameter ζ̇ (t) is found by taking the
second-order switching time derivative of ẋ(t):

ζ̇ (t) =
∂2

∂32
ẋ(t) =

∂

∂3
ż1(t)

=
∂

∂3

(

D1f (x(t) , 3, t
)

·z1(t) +D2f
(

x(t) , 3, t)·θ1
)

such that

ζ̇ (t) = A(t) ·ζ (t) +B(t) ·η

+
(

z1(t)
T

θ1T
)

(

D2
1f

(

x(t) , 3, t
)

D1,2f (x(t) , 3, t
)

D2,1f
(

x(t) , 3, t
)

D2
2f

(

x(t) , 3, t
)

)

(

z2(t)
θ2

)

subject to : ζ (0) =
∂2

∂32
x(0) = 0.

Define

C(t) ,

(

D2
1f

(

x(t) , 3, t
)

D1,2f (x(t) , 3, t
)

D2,1f
(

x(t) , 3, t
)

D2
2f

(

x(t) , 3, t
)

)

and notice that ζ̇ (t) is linear with respect to ζ (t) and
therefore ζ̇ (t) has solution

ζ (t) =

∫ t

T0

8(t, r)
[

B(r) ·η+
(

z1(r)T θ1T)

C(r)

(

z2(r)
θ2

)
]

dt.

Substituting ζ (t) into (24), we see that

D2J (3) ·(θ1, θ2) +DJ (3) ·η =

∫ TF

T0

[

z1(r)
T

D2`(x(r)) z2(r)

+D`(x(r))

∫ r

T0

8( r, s)
[

B(s) ·η+( z1(s)T θ1T
) C(s)

(

z2(s)
θ2

)
]

ds
]

dr

+z1(TF )T D2m(x(TF )) z2(TF ) +Dm(x(TF )) ·
∫ TF

T0

8( TF , s)
[

B(s) ·η+( z1(s)T θ1T
) C(s)

(

z2(s)
θ2

)
]

ds.

Note that DJ (3) ·η equals
∫ TF

T0
D`(x(r))

∫ r

T0
8(r, s) B(s)

·η ds dr+Dm(x(TF))
∫ TF

T0
8( TF , s) B(s)·η ds, which is clear

from (21) and (22). Therefore, this leaves

D2J (3) ·(θ1, θ2) =

∫ TF

T0

[

z1(r) D2`(x(r)) z2(r) +D`(x(r))

∫ τ

T0

8(r, s) ( z1(s)T θ1T
) C(s)

(

z2(s)
θ2

)

ds
]

dr

+z1(TF)T D2m(x(TF)) z2(TF)

+Dm(x(TF))

∫ TF

T0

8( TF , s)
(

z1(s)T θ1T)

C(s)

(

z2(s)
θ2

)

ds.

Split the integral over dr, move D`
(

x(r)
)

and Dm(x(TF))
into their respective integrals and switch the order of inte-
gration of the double integral:

=

∫ TF

T0

z1(r)T D2`(x(r)) z2(r) dr

+

∫ TF

T0

∫ TF

s

D`(x(r)) 8(r, s)
(

z1(s)T θ1T)

C(s)

(

z2(s)
θ2

)

dr ds

+z1(TF)T D2m(x(TF)) z2(TF)

+

∫ TF

T0

Dm
(

x(TF)
)

8(TF , s)
(

z1(s)T , θ1T)

C(s)

(

z2(s)
θ2

)

ds.

We combine the integrals over ds, and note that ρ(r)T,
in (23), enters the equations. Furthermore, we switch the
dummy variable s to r and put everything back under one
integral:

=

∫ TF

T0

z1(r)T D2`(x(r)) z2(r) +ρ(r)T
(

z1(r)T θ1T)

C(r)

(

z2(r)
θ2

)

dr+z1(TF)T D2m(x(TF)) z2(TF) .

Expand C(·) back out,

=

∫ TF

T0

z1(r)T D2`(x(r)) z2(r)

+ρ(r)T
[

z1(r)T D2
1f (x(r) , 3, r) z2(r)

]

+ρ(r)T
[

z1(r)T D1,2f (x(r) , 3, r) θ2
]

+ρ(r)T
[

θ1T
D2,1f (x(r) , 3, r) z2(r)

]

+ρ(r)T
[

θ1T
D2

2f (x(r) , 3, r) θ2
]

dr

+z1(TF)T D2m(x(TF)) z2(TF) .

Switching to index notation, where ρk( ·) is the kth compo-
nent of ρ( ·) and f k( ·, ·, ·) is the kth component of f ( ·, ·, ·),

=

∫ TF

T0

z1(r)T D2`(x(r)) z2(r)

+z1(r)T
n

∑

k=1

ρk(r) D2
1f k(x( r, 3, r) z2(r)

+z1(r)T
n

∑

k=1

ρk(r) D1,2f k(x(r) , 3, r) θ2

+θ1T
n

∑

k=1

ρk(r) D2,1f k(x(r) , 3, r) z2(r)

+θ1T
n

∑

k=1

ρk(r) D2
2f k(x(r) , 3, r) θ2 dr

+z1(TF)T D2(x(TF)) z2(TF) .
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Rearrange the terms allows D2J (3) ·(θ1, θ2) to be parti-
tioned into the summation of parts P1, P2, P3 given by

P1 =

∫ TF

T0

z1(r)T
[

D2`(x(r)) +

n
∑

k=1

ρk(r) D2
1f k

(

x(r) , 3, r
)]

z2(r) dr+z1(TF)T D2m
(

x(TF)
)

z2(TF) ,

P2 =

∫ TF

T0

θ2T
n

∑

k=1

ρk(r) D2,1f k
(

x(r) , 3, r) z1(r) +

θ1
n

∑

k=1

ρk(r) D2,1f k
(

x(r) , 3, r
)

z2(r) dr

P3 =

∫ TF

T0

θ1T
n

∑

k=1

ρk(r) D2
2f k

(

x(r) , 3, r
)

θ2 dr.

Looking at P1 first, let

g(r) = D2`
(

x(r)
)

+

n
∑

k=1

ρk(r) D2
1f k

(

x(r) , 3, r) .

Then,

P1 =

∫ TF

T0

z1(r)T g(r) z2(r) dr+z1(TF) D2m
(

x(TF)
)

z2(TF) .

Substituting (22) for z·( ·), results in

=

∫ TF

T0

[ ∫ r

T0

8(r, s) B(s) θ1 ds

]T

g(r)

∫ r

T0

8( r, ω) B( ω) θ2 dw dr

+

[ ∫ TF

T0

8( TF , s) B(s) θ1 ds

]T

D2m
(

x(TF)
)
∫ TF

T0

8( TF , w)

B(w) θ2 dw.

The integrals may be specified as follows:

=

∫ TF

T0

∫ r

T0

∫ r

T0

θ1T
B(s)T 8(r, s)T g(r) 8( r, w) B(w) θ2 dsdwdr

+

∫ TF

T0

∫ TF

T0

θ1B(s)T 8( TF , s)T D2m
(

x(TF)
)

8( TF , w) B(w) θ2 dsdw.

Note that the volume of the triple integral is given by
r = max( s, w). Therefore, the order of integration may be
switched to

=

∫ TF

T0

∫ TF

T0

∫ TF

max(s,w)
θ1T

B(s)T 8( r, s)T g(r) 8( r, w) B(w) θ2 drdsdw

+

∫ TF

T0

∫ TF

T0

θ1B(s)T 8(TF , s)T D2m
(

x(TF)
)

8( TF , w) B(w) θ2 dsdw.

We combine the double integral with the triple integral and
rearrange the terms so that only those depending on r are
inside the internal integral:

=

∫ TF

T0

∫ TF

T0

B(s)T
[ ∫ T

max(s,w)
8(r, s)T g(r) 8( r, w) dr

+8(TF , s)T D2m
(

x(TF)
)

8( TF , w)
]

B(w) ds dw·(θ1, θ2) .

Let

�(t) =

∫ TF

t

8( r, t) g(r) 8( r, t) dr+8( TF , t)T D2m

(

x(TF)
)

8( TF , t) ,

where �(t) ∈ R
n×n is the integral curve to the following

differential equation

�̇(t) =−A(t)T �(t) −�(t) A(t) −g(t)

=−A(t)T �(t) −�(t) A(t) −D2`
(

x(t)
)

−

n
∑

k=1

ρk(t) D2
1f k

(

x(t) , 3, t
)

subject to : �(TF) = D2m
(

x(TF)
)

.

Then, depending on the relationship between s and w, P1

becomes

P1 =











∫ TF

T0

∫ TF

T0
B(s)T �(s) 8( s, w) B(w) dsdw·(θ1, θ2) s > w

∫ TF

T0

∫ TF

T0
B(s)T 8( w, s)T �(w) B(w) dsdw·(θ1, θ2) s < w

∫ TF

T0

∫ TF

T0
B(s)T �(s) B(w) dsdw·(θ1, θ2) s = w.

P1 is a scalar and equal to its transpose, therefore

P1
s<w
=

∫ TF

T0

∫ TF

T0

B(w)T �(w) 8(w, s) B(s) dsdw·(θ2, θ1) .

Use i and j to index θ1 and θ2, respectively, where θ indi-
cate the variations of 3 and i, j = 1, . . . , L. Integrating the
δ-functions in B(s) and B(w) will pick out times s = τi+λi

and w = τj+λj such that P1ij
is given by

P1ij









































i>j
=

[

fi
(

x(τi+λi) , t
)

−f1
(

x(τi+λi) , t
)
]T

�(τi+λi) 8(τi+λi, τj+λj)
[

fj
(

x(τj+λj) , t
)

−f1
(

x(τj+λj) , t
)
]

·(θ1
i , θ2

j )

i<j
=

[

fj
(

x(τj+λj) , t
)

−f1
(

x(τj+λj) , t
)
]T

�(τj+λj) 8(τj+λj, τi+λi)
[

fi
(

x(τi+λi) , t
)

−f1
(

x(τi+λi) , t
)
]

·(θ1
i , θ2

j )

i=j
=

[

fi
(

x(τi+λi) , t
)

−f1
(

x(τi+λi) , t
)
]T

�(τi+λi)
[

fi
(

x(τi+λi) , t
)

−f1
(

x(τi+λi) , t
)
]

·(θ1
i , θ2

i ) .

Taking the limit 3 → 0, lim3→0 P1ij
becomes

lim
3→0

P1ij

























i>j
= [fi (x(τi) , t)−f1 (x(τi) , t)]T �(τi) 8(τi, τj)

[

fj
(

x(τj) , t
)

−f1
(

x(τj) , t
)]

·(θ1
i , θ2

j )
i<j
=

[

fj
(

x(τj) , t
)

−f1
(

x(τj) , t
)]T

�(τj) 8(τj, τi)

[fi (x(τi) , t)−f1 (x(τi) , t)] ·(θ1
i , θ2

j )
i=j
= [fi (x(τi) , t)−f1 (x(τi) , t)] �(τi)

[fi (x(τi) , t)−f1 (x(τi) , t)] ·(θ1
i , θ2

i ) .
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Now consider P2, where

D2,1f k (x(t) , 3, t) =
{

δ
(

t−(τa+λa)−
)

D1f k
a (x(t) , t)T

−δ
(

t−(τa+λa)+
)

D1f k
1 (x(t) , t)T

}L

a=1
.

Choose again the ith index of θ1 and the jth index of θ2,
where i, j = 1, . . . , L. This corresponds to the ith index of
z1(t) and the jth index of z2(t), where the kth index of z·( ·) is

z·
k(t) =

∫ t

T0

8(t, r)
[

δ
(

r−(τk+λk)−
)

fk
(

x(r) , r
)

−δ
(

r−(τk+λk)+
)

f1
(

x(r) , r
)
]

drθ ·
k . (25)

Specifying these indexes allows us to revert back to matrix
representation for ρ( ·) and f ( ·, ·, ·). Thus,

P2ij
=

∫ TF

T0

θ2
j ρ(r)T

[

δ
(

r−(τj+λj)
−

)

D1fj (x(r) , r)

−δ
(

r−(τj+λj)
+

)

D1f1 (x(r) , r)
]

z1
i (r)

+θ1
i ρ(r)T

[

δ
(

r−(τi+λi)
−

)

D1fi (x(r) , r)

−δ
(

r−(τi+λi)
+

)

D1f1 (x(r) , r)
]

z2
j (r) dr.

Integrating over the δ-functions picks out the times for
which the δ-functions’ arguments are zero:

=θ2
j ρ

(

(τj+λj)
−

)

D1fj
(

x(τj+λj)
− , (τj+λj)

−
)

z1
i

(

(τj+λj)
−

)

−θ2
j ρ

(

(τj+λj)
+

)

D1f1
(

x(τj+λj)
+ , (τj+λj)

+
)

z1
i

(

(τj+λj)
+

)

+θ1
i ρ

(

(τi+λi)
−

)T
D1fi

(

x(τi+λi)
− , (τi+λi)

−
)

z2
j

(

(τi+λi)
−

)

−θ1
i ρ

(

(τi+λi)
+

)T
D1f1

(

x(τi+λi)
+ , (τi+λi)

+
)

z2
j

(

(τi+λi)
+

)

.

The indexes i and j relate in three possible ways: i < j,
i = j, or i > j. The first and last case are the same, which
is based on the fact that partial derivatives (with respect to
perturbations indexed with i and j) commute.

Recall that τ is a set of monotonically increasing times.
Therefore, if i > j, then τi+λi > τj+λj. Given (25), z·

k(t) is
nonzero only after time t =(τk+λk)−. In other words, the
state does not change up until the first injected control and
so the state perturbation z will be zero for all times prior
to the perturbations to the control duration. Consequently,
because tj+λj < ti+λi, given that i > j and so z1

i (τj+λj) =
0. Therefore, the first two terms of P2ij

are zero and

i>j
=θ1

i ρ
(

(τi+λi)
−

)T
D1fi

(

x(τi+λi)
− , (τi+λi)

−
)

8
(

(τi+λi)
− , (τj+λj)

−
)
[

fj
(

x(τj+λj)
− , (τj+λj)

−
)

−f1
(

x(τj+λj)
+ , (τj+λj)

+
)
]

θ2
j −θ1

i ρ
(

(τi+λi)
+

)T

D1f1
(

x(τi+λi)
+ , (τi+λi)

+
)

8
(

(τi+λi)
− , (τj+λj)

−
)

[

fj
(

x(τj+λj)
− , (τj+λj)

−
)

−f1
(

x(τj+λj)
+ , (τj+λj)

+
)
]

θ2
j .

Omitting the no longer useful superscripts + and −, we see
that

i>j
=θ1

i ρ
(

τi+λi

)T
D1fi

(

x(τi+λi) , τi+λi

)

8
(

τi+λi, τj+λj

)

[

fj
(

x(τj+λj) , τj+λj

)

−f1
(

x(τj+λj) , τj+λj

)
]

θ2
j

−θ1
i ρ

(

τi+λi

)T
D1f1

(

x(τi+λi) , τi+λi

)

8
(

τi+λi, τj+λj

)

[

fj
(

x(τj+λj) , τj+λj

)

−f1
(

x(τj+λj) , τj+λj

)
]

θ2
j

i>j
=θ1

i ρ
(

τi+λi

)T

[

D1fi
(

x(τi+λi) , τi+λi

)

−D1f1
(

x(τi+λi) , τi+λi

)
]

8
(

τi+λi, τj+λj

)

[

fj
(

x(τj+λj) , τj+λj

)

−f1
(

x(τj+λj) , τj+λj

)
]

θ2
j .

Taking the limit 3 → 0,

lim
3→0

P2
i>j
=ρ (τi)

T [D1fi (x(τi) , τi)−D1f1 (x(τi) , τi)]

8
(

τi, τj

) [

fj
(

x(τj) , τj

)

−f1
(

x(τj) , τj

)]

·(θ1
i , θ2

j ) .

Now consider the i = j case. Because i = j, the perturba-
tions θ1 and θ2 are equivalent, in the sense that they are both
perturbations to the same control duration λi, and therefore
z1(t) and z2(t) are also equivalent. Thus,

P2ij

i=j
=2θ2

i ρ
(

(τi+λi)
−

)T
D1fi

(

x(τi+λi)
− , (τi+λi)

−
)

z1
i

(

(τi+λi)
−

)

−2θ2
i ρ

(

(τi+λi)
+

)T

D1f1
(

x(τi+λi)
+ , (τi+λi)

+
)

z1
i

(

(τi+λi)
+

)

.

Substituting in for z1
i ( ·),

=2θ2
i ρ

(

(τi+λi)
−

)T
D1fi

(

x(τi+λi)
− , (τi+λi)

−
)

∫ (τi+λi)
−

T0

8
(

(τi+λi)
− , r

)

·
[

δ
(

r−(τi+λi)
−

)

fi (x(r) , r)

−δ
(

r−(τi+λi)
+

)

f1 (x(r) , r)
]

drθ1
i

−2θ2
i ρ

(

(τi+λi)
+

)T
D1f1

(

x(τi+λi)
+ , (τi+λi)

+
)

∫ (τi+λi)
+

T0

8
(

(τi+λi)
+ , r

)

·
[

δ
(

r−(τi+λi)
−

)

fi (x(r) , r)

−δ
(

r−(τi+λi)
+

)

f1 (x(r) , r)
]

drθ1
i .

This time the arguments of the δ-functions are zero at the
upper bounds of their integrals. Thus,

=2θ2
i ρ

(

(τi+λi)
−

)T
D1fi

(

x(τi+λi)
− , (τi+λi)

−
)

·

1

2
8

(

(τi+λi)
− , (τi+λi)

−
)

fi
(

x(τi+λi)
− , (τi+λi)

−
)

θ1
i

−2θ2
i ρ

(

(τi+λi)
+

)T
D1f1

(

x(τi+λi)
+ , (τi+λi)

+
)

·
[

8
(

(τi+λi)
+ , (τi+λi)

−
)

fi
(

x(τi+λi)
− , (τi+λi)

−
)

−8
(

(τi+λi)
+ , (τi+λi)

+
) 1

2
f1

(

x(τi+λi)
+ , (τi+λi)

+
)
]

θ1
i .
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Recall that 8( (τi+λi)− , (τi+λi)− ) = 8( (τi+λi)+ , (τi+
λi)+ ) = I and that 8( ·, ·) is a continuous operator, such
that 8( (τi+λi)+ , (τi+λi)− ) = I . Therefore, omitting the no
longer helpful − and + superscripts,

=ρ(τi+λi)
T
[

D1fi
(

x(τi+λi) , τi+λi

)

fi
(

x(τi+λi) , τi+λi

)

−2D1f1
(

x(τi+λi) , (τi+λi)
)

fi
(

x(τi+λi) , (τi+λi)
)

+D1f1
(

x(τi+λi) , (τi+λi)
)

f1
(

x(τi+λi) , (τi+λi)
)
]

·(θ1
i , θ2

i ) .

Taking the limit 3 → 0,

lim
3→0

P2
i=j
=ρ(τi)

T [D1fi (x(τi) , τi) fi (x(τi) , τi)

−2D1f1 (x(τi) , (τi) ) fi (x(τi) , (τi) )

+D1f1 (x(τi) , (τi) ) f1 (x(τi) , (τi) )] ·(θ1
i , θ2

i ) .

Finally, P3. Start with D2
2f k

(

x(r) , λ, r
)

. For i = j,

D2
2f k (x(r) , λ, r)ij =

(
∂

∂3i

δ
(

r−(τi+λi)
−

)
)

f k
i (x(r) , r)

−

(
∂

∂3i

δ
(

r−(τi+λi)
+

)

f k
1 (x(r) , r)

)

and, for i 6= j, D2
2f k

(

x(r) , λ, r
)

ij
= 0. Revert back to matrix

representation of ρ( ·) and f ( ·, ·). For i = j, using chair rule
on D2

2f k
(

x(r) , 3, r
)

ij
results in

D2
2f k (x(r) , 3, r)ij =−δ̇

(

r−(τi+λi)
−

)

f k
i (x(r) , r)

+δ̇
(

r−(τi+λi)
+

)

f k
1 (x(r) , r) .

Then,

P3 =

∫ TF

T0

[

−ρ(r)T δ̇
(

r−(τi+λi)
−

)

fi (x(r) , r)

+ρ(r)T δ̇
(

r−(τi+λi)
+

)

f1 (x(r) , r)
]

dr·(θ1
i , θ2

i ) .

Using integration by parts,

=

[

−ρ(r)T δ
(

r−(τi+λi)
−

)

fi (x(r) , r)

∣
∣
∣
∣

TF

T0

+ρ(r)T δ
(

r−(τi+λi)
+

)

f1 (x(r) , r)

∣
∣
∣
∣

TF

T0
∫ TF

T0

[

ρ̇(r)T fi (x(r) , r)

+ρ(r)T D1fi (x(r) , r) ẋ(t) +ρ(r)T D2fi (x(r) , r)
]

·

δ
(

r−(τi+λi)
−

)

dr−

∫ TF

T0

[

ρ̇(r)T f1 (x(r) , r)

+ρ(r)T D1f1 (x(r) , r) ẋ(t) +ρ(r)T D2f1
(

x(r) , r)
]

δ
(

r−(τi+λi)
+

)

dr

]

·(θ1
i , θ2

i ) .

Integrating over the δ-functions picks out the times for
which the δ-functions’ arguments are zero:

=
[

ρ̇
(

(τi+λi)
−

)

fi

(

x
(

(τi+λi)
−

)

, (τi+λi)
−

)

−ρ̇
(

(τi+λi)
+

)

f1

(

x
(

(τi+λi)
+

)

, (τi+λi)
+

)

+ρ
(

(τi+λi)
−

)T
D1fi

(

x
(

(τi+λi)
−

)

, (τi+λi)
−

)

ẋ
(

(τi+λi)
−

)

−ρ
(

(τi+λi)
+

)T
D1f1

(

x
(

(τi+λi)
+

)

, (τi+λi)
+

)

ẋ
(

(τi+λi)
+

)

+ρ
(

(τi+λi)
−

)T
D2fi

(

x
(

(τi+λi)
−

)

, (τi+λi)
−

)

−ρ
(

(τi+λi)
+

)T
D2f1

(

x
(

(τi+λi)
+

)

, (τi+λi)
+

)]

·(θ1
i , θ2

i ) .

Using (23),

=

[
[

−ρ
(

(τi+λi)
−

)T
D1fi

(

x
(

(τi+λi)
−

)

, (τi+λi)
−

)

−D`

(

x
(

(τi+λi)
−

)
)

]

·fi

(

x
(

(τi+λi)
−

)

, (τi+λi)
−

)

−
[

−ρ
(

(τi+λi)
+

)T
D1f1

(

x
(

(τi+λi)
+

)

, (τi+λi)
+

)

−D`

(

x
(

(τi+λi)
+

)
)

]

·f1

(

x
(

(τi+λi)
+

)

, λi, (τi+λi)
+

)

+ρ
(

(τi+λi)
−

)T
D1fi

(

x
(

(τi+λi)
−

)

, (τi+λi)
−

)

fi

(

x
(

(τi+λi)
−

)

, (τi+λi)
−

)

−ρ
(

(τi+λi)
+

)T

D1f1

(

x
(

(τi+λi)
+

)

, (τi+λi)
+

)

f1

(

x
(

(τi+λi)
+

)

, (τi+λi)
+

)

+ρ
(

(τi+λi)
−

)T
D2fi

(

x
(

(τi+λi)
−

)

, (τi+λi)
−

)

−ρ
(

(τi+λi)
+

)T
D2f1

(

x
(

(τi+λi)
+

)

, (τi+λi)
+

)
]

·(θ1
i , θ2

i ) .

Canceling out terms,

=
[

−D`
(

x
(

(τi+λi)
−

)) (

fi
(

x
(

(τi+λi)
−

)

, (τi+λi)
−

)

−f1
(

x
(

(τi+λi)
+

)

, (τi+λi)
+

))

+ρ
(

(τi+λi)
−

)T (

D2fi
(

x
(

(τi+λi)
−

)

, (τi+λi)
−

)

−D2f1
(

x
(

(τi+λi)
+

)

, (τi+λi)
+

))]

·
(

θ1
i , θ2

i

)

.

Then, taking 3 → 0 and omitting the superscripts,

lim
3→0

P3 = [D` (x(τi) ) (fi (x(τi) , τi)−f1 (x(τi) , τi))

+ρ(τi)
T (D2fi (x(τi) , τi)−D2f1 (x(τi) , τi))

]

·(θ1
i , θ2

i ) .

Therefore, for i 6= j,

lim
3→0

D2J =
[

[fi (x(τi) , τi)−f1 (x(τi) , τi)]
T �(τi)

+ρ (τi)
T [D1fi (x(τi) , τi)−D1f1 (x(τi) , τi)]

]

·

8(τi, τj)
[

fj
(

x(τj) , τj

)

−f1
(

x(τj) , τj

)]
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and, for i = j,

lim
3→0

D2J =
[

fi
(

x(τi) , τi

)

−f1
(

x(τi) , τi

)
]T

�(τi)
[

fi
(

x(τi) , τi

)

−f1
(

x(τi) , τi

)
]

+ρ(τi)
T
[

D1fi
(

x(τi) , τi

)

fi
(

x(τi) , τi

)

−2D1f1
(

x(τi) , τi

)

fi
(

x(τi) , τi

)

+D1f1
(

x(τi) , τi

)

f1
(

x(τi) , τi

)

+D2fi

(

x(τi) , τi

)

−D2f1

(

x(τi) , τi

)]

−D` (x(τi) ) (fi (x(τi) , τi)−f1 (x(τi) , τi)) .

Given dynamics of the form (1), the MIH (for i = j) takes
the form in (6).

A.2 Proof of Proposition 5

Proof. The following analysis shows the algebraic depen-
dence of the MIH expression on the first-order Lie brack-
ets [hi, hj] and [g, hi] and proves Proposition 5 if either:
(1) ρT[hi, hj] 6= 0 or (2) ρT[g, hi] 6= 0, as guaranteed by
Proposition 4.

Consider controls such that uj = vi ∀ j, i 6= k and vk = 0
and expresses the MIH expression (6) as

d2J

dλ2
+

= uTGu−uk( (Dxl1) hk−ρT[g, hk]) ,

where Gij = 0 ∀ i, j ∈ [1, M]\{k}, Gik = Gki = 1
2 [hi, hk], and

Gkk = hT
k �hk+ρTDxhk ·hk . The matrix G is shown to be

either indefinite or negative semidefinite if there exists a
Lie bracket term [hi, hk] such that ρT[hi, hk] 6= 0. From
Proposition (4), there exist i, j ∈ [1, M] such that either
ρT[hi, hj] 6= 0 or ρT[g, hi] 6= 0. Let k ∈ [1, M] be an index
chosen such that either ρT[hi, hk] 6= 0 or ρT[g, hi] 6= 0 for
some i ∈ [1, M]\{k}.

We use summation notation to express the MIH as

d2J

dλ2
=

( M
∑

i=1

hi(ui−vi)

)T

�

M
∑

j=1

hj(uj−vj)

+ρT

[
∂g

∂x
g+

∂g

∂x

M
∑

j=1

hjuj+

M
∑

j=1

∂hj

∂x
ujg

+

M
∑

j=1

∂hj

∂x
uj

M
∑

j=1

hjuj+
∂g

∂x
g+

∂g

∂x

M
∑

i=1

hivi

+

M
∑

i=1

∂hi

∂x
vig+

M
∑

i=1

∂hi

∂x
vi

M
∑

i=1

hivi−2
∂g

∂x
g

−2
∂g

∂x

M
∑

j=1

hjuj−2
M

∑

i=1

∂hi

∂x
vig−2

M
∑

i=1

∂hi

∂x
vi

M
∑

j=1

hjuj

]

−
∂`

∂x
(

M
∑

i=1

hi(ui−vi))

which can be simplified to

= (
M

∑

i=1

hi(ui−vi)
)T

�

M
∑

j=1

hj(uj−vj)

+ρT
(

−
∂g

∂x

M
∑

j=1

hjuj+

M
∑

j=1

∂hj

∂x
ujg+

M
∑

j=1

∂hj

∂x
uj

M
∑

j=1

hjuj

+
∂g

∂x

M
∑

i=1

hivi−

M
∑

i=1

∂hi

∂x
vig+

M
∑

i=1

∂hi

∂x
vi

M
∑

i=1

hivi

−2
M

∑

i=1

∂hi

∂x
vi

M
∑

j=1

hjuj

)

−
∂`

∂x
(

M
∑

i=1

hi(ui−vi)) .

Rearranging the expression into quadratic and linear terms
in the control input, we rewrite the MIH expression (6) as

= (
M

∑

i=1

hi(ui−vi)
)T

�

M
∑

j=1

hj(uj−vj)

+ρT
(

M
∑

j=1

∂hj

∂x
uj

M
∑

j=1

hjuj+

M
∑

i=1

∂hi

∂x
vi

M
∑

i=1

hivi

−2
M

∑

i=1

∂hi

∂x
vi

M
∑

j=1

hjuj

)

−
∂`

∂x
(

M
∑

i=1

hi(ui−vi))

+ρT
(

−
∂g

∂x

M
∑

j=1

hjuj+

M
∑

j=1

∂hj

∂x
ujg+

∂g

∂x

M
∑

i=1

hivi−

M
∑

i=1

∂hi

∂x
vig

)

.

Further considering controls such that uj = vi ∀ j, i 6= k and
vk = 0,

= ( hkuk)T �( hkuk) +ρTD−
∂`

∂x
( hkuk)

+ρT
(

−
∂g

∂x
hkuk+

∂hk

∂x
ukg

)

,

where uk is the kth control input and D is

D =

M
∑

j=1

∂hj

∂x
uj

M
∑

j=1

hjuj+

M
∑

i=1

∂hi

∂x
vi

M
∑

i=1

hivi

−2
M

∑

i=1

∂hi

∂x
vi

M
∑

j=1

hjuj

= (
M

∑

j 6=k

∂hj

∂x
uj)

M
∑

j 6=k

hjuj+(
∂hk

∂x
uk)

M
∑

j 6=k

hjuj

+(
M

∑

j 6=k

∂hj

∂x
uj) hkuk
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+
∂hk

∂x
ukhkuk+(

M
∑

i6=k

∂hi

∂x
vi)

M
∑

i6=k

hivi

−2(
M

∑

i6=k

∂hi

∂x
vi)

M
∑

j 6=k

hjuj−2(
M

∑

i6=k

∂hi

∂x
vi) hkuk

= uk

M
∑

j 6=k

∂hk

∂x
hjuj−uk(

M
∑

j 6=k

∂hj

∂x
ujhk) +

∂hk

∂x
ukhkuk

= uk

[
M

∑

j 6=k

uj

(∂hk

∂x
hj−

∂hj

∂x
hk

)]

+
∂hk

∂x
ukhkuk

= uk

[
M

∑

j 6=k

uj[hj, hk]
]

+
∂hk

∂x
ukhkuk ,

where terms cancel because uj = vi ∀ j, i 6= k. We use
the property xTAx = xT

(
1
2 ( A+AT)

)

x and we write D in a
matrix form,

= uT











0 . . . 1
2 [h1, hk ] . . . 0

...
. . . 1

2 [h2, hk ] . .
. ...

1
2 [h1, hk ] 1

2 [h2, hk ] ∂hk

∂x
hk

1
2 [hM−1, hk ] 1

2 [hM , hk ]
... . .

. 1
2 [hM−1, hk ]

. . .
...

0 . . . 1
2 [hM , hk ] . . . 0











u.

The dotted entries in the matrix represent zero terms.
Combining all terms, the MIH can be written as

d2J

dλ2
= uTGu−

∂`

∂x
( hkuk) +ρT

(

−
∂g

∂x
hkuk+

∂hk

∂x
ukg

)

(26)

= uTGu−uk

(∂`

∂x
hk−ρT[g, hk]

)

, (27)

where

G =











0 . . . 1
2 ρT[h1 , hk ] . . . 0

...
. . . 1

2 ρT[h2 , hk ] . .
. ...

1
2 ρT[h1 , hk ] 1

2 ρT[h2 , hk ] C1
1
2 ρT[hM−1, hk ] 1

2 ρT[hM , hk ]
... . .

. 1
2 ρT[hM−1, hk ]

. . .
...

0 . . . 1
2 ρT[hM , hk ] . . . 0











and C1 = hT
k �hk+ρT ∂hk

∂x
hk .

Given that dJ
dλ+

= 0, then, by Proposition 3, ρThi =

0 ∀ i ∈ [1, M]. In addition, by Proposition 1, ρ 6= 0 and, by
Proposition 4, there exist i, j ∈ [1, M] such that ρT[hi, hj] 6=
0 or ρT[g, hi] 6= 0. It is more convenient to consider two
cases that capture all possible scenarios: (1) ρT[hi, hj] 6=
0 and (2) ρT[hi, hj] = 0 (which implies ρT[g, hi] 6= 0, by
Proposition 3).

Case 1. ρT[hi, hj] 6= 0.

Let G[i,j] denote a 2×2 matrix obtained from G by
deleting all but its ith and jth row and ith and jth column

G[i,j] =

[

Gii Gij

Gji Gjj

]

,

where Gij = Gji because G is symmetric. The principal
minors of G of order two are given by 12 = det(G[i,j]) =
Gii Gjj−G2

ij Gji ∀ i 6= j ∈ [1, M].
Consider first the diagonal terms of G[i,j]. We note

that, because i 6= j and Gii = 0 ∀ i 6= k, then either Gii =
0 or Gjj = 0. Therefore, 12 = −GijGji ∀ i 6= j ∈ [1, M].
Next, consider the off-diagonal elements. We note that
Gij = 0 ∀ i, j ∈ [1, M] \{k}. Given that Gik = Gki =
1
2ρT[hi, hk] ∀ i ∈ [1, M]\{k}, we have 12 = 0 ∀ i ∈ [1, M]\

{k} and 12 = − 1
4 ( ρT[hi, hk])2, otherwise. We summarize

these cases as follows

12 =

{

0 ∀ i, j ∈ [1, M]\{k}

−G2
ij = − 1

4 ( ρT[hi, hk])2 ≤ 0 otherwise.

If there exists i ∈ [1, M] such that ρT[hi, hj] 6= 0, there is at
least one negative second-order principal minor. Therefore,
G is indefinite and so there exist controls u ∈ R

M such that
uTGu < 0.

Choose u ∈ R
M such that uTGu < 0 and let uk ∈ R rep-

resent the kth element of u. If uk

(

ρT[g,hk]−Dxlhk

)

≤ 0,
then

uTGu < 0 =⇒ uTGu+uk

(

ρT[g,hk]−Dxlhk

)

< 0.

Else, if uk

(

ρT[g,hk]−Dxlhk

)

> 0, choose u′ = −u so that

u′
k

(

ρT[g,hk]−Dxlhk

)

= −uk

(

ρT[g,hk]−Dxlhk

)

< 0

and

u′TGu′+u′
k

(

ρT[g,hk]−Dxlhk

)

= uTGu−uk

(

ρT[g,hk]−Dxlhk

)

< 0.

Therefore, if ρT[hi, hj] 6= 0, there always exists u ∈ R
M

such that d2J

dλ2 < 0.

Case 2. ρT[hi, hj] = 0.

If ρT[hi, hj] = 0 ∀ i, j ∈ [1, M], then, shown in Proposi-
tion 4, there exists i ∈ [1, M] such that ρT[g, hi] 6= 0. For
ρT[hi, hj] = 0, the MIH becomes

u2
k

(

hT
k �hk+ρTDxhk

)

+uk

(

ρT[g,hk]−Dxlhk

)

, (28)

which is a quadratic expression of the form ax2+bx+c.
Quadratic expressions become negative if and only if a ≤ 0
or b2−4ac > 0. Therefore, (28) takes negative values if and
only if, for some time t ∈ [to, to+T]:

1. hT
k �hk+ρTDxhk ≤ 0; OR

2. ρT[g,hk]−Dxlhk 6= 0.
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We consider the second condition: ρT[g,hk]−Dxlhk 6= 0.
Because dJ

dλ+
= 0 ∀ u ∈ R

M , ∀ t ∈ [to, to+T], then

dJ

dλ+
= 0 =⇒ ρThi = 0 ∀ i ∈ [1, M], ∀ t ∈ [to, to+T]

=⇒ ρThk = 0 ∀ t ∈ [to, to+T]

=⇒ ρThk = 0 for t = to+T

AND ρ̇Thk = 0 ∀ t ∈ [to, to+T]

=⇒ Dxm hk = 0 for t = to+T

AND

( −Dxl−ρTDxf2) hk = 0 ∀ t ∈ [to, to+T]

=⇒ (x−xd)T P1 hk = 0 for t = to+T

AND ( −(x−xd)T Q−ρTDxf2)

hk = 0 ∀ t ∈ [to, to+T].

Consider positive-definite weight matrices Q = δP1 � 0,
where δ is a scale factor. Then,

(x−xd)T P1hk = 0|to+T ⇔ (x−xd)T δP1hk = 0|to+T

⇔ (x−xd)T Qhk = 0|to+T

and

dJ

dλ+
= 0 =⇒ Dxm hk = 0

⇔ Dxl hk = 0 AND ρTDxf2 hk = 0.

Then, ρT[g, hk]−Dxlhk = ρT[g, hk] 6= 0. Therefore,
there exist control solutions u ∈ R

M such that the MIH
expression becomes negative.

A.3 Derivation of Equation (11)

In the following derivation, we treat the first- and second-
order mode insertion gradient terms separately.

Associate f1 with default control v and f2 with injected
control u, such that

f1 , f (x(t) , v(t)) = g(x(t)) +h(x(t)) v(t)

f2 , f (x(t) , u(t)) = g(x(t)) +h(x(t)) u(t) .

For simplicity, we drop the arguments as necessary. For the
mode insertion gradient, the update step is straightforward

∂

∂u

dJ

dλ+
=

∂

∂u
ρT( f2−f1) =

∂

∂u
ρTh(u−v) = ρTh (29)

∂2

∂u2

dJ

dλ+
= 0. (30)

The update step on the MIH is more complicated and so we
divide the MIH expression into three parts

d2J

dλ2
+

= A1+A2+A3,

where the terms A1,A2,A3 are given by the following set
of equations

A1 =( f2−f1)T �( f2−f1)

A2 =ρT(Dxf2·f2+Dxf1·f1−2Dxf1·f2)

A3 =−Dxl·( f2−f1) .

Let l2 = d2J

dλ2
+

. Using the Gâteux derivative,

∂l2

∂u
=

∂l2(u+εη)

∂ε

∣
∣
∣
ε=0

=
∂A1( ·)

∂ε
+

∂A2( ·)

∂ε
+

∂A3( ·)

∂ε

∣
∣
∣
ε=0

.

Then,

∂A1

∂u
=

∂

∂ε
A1(u+εη)

∣
∣
∣
ε=0

=
∂

∂ε
( [h

(

(u+εη) −v
)

]T�[h
(

(u+εη) −v
)

])
∣
∣
∣
ε=0

=( hη)T � ( h·(u+εη−v)) +( h(u+εη−v))T � hη

∣
∣
∣
ε=0

=ηThT� hu−ηThT� hv+uT hT� hη−vThT� hη

=
(

uT hT
(

�T+�
)

h−vThT
(

�T+�
)

h
)

η.

∂A2

∂u
=

∂

∂ε
A2(u+εη)

∣
∣
∣
ε=0

=
∂

∂ε
ρT (Dxf1·f1−2 Dxf1·f2+Dxf2·f2)

∣
∣
∣
ε=0

=
∂

∂ε
ρT (Dx( g+hv) ·( g+hv)

−2Dx( g+hv) (g+h(u+εη) )

+Dx (g+h(u+εη) ) (g+h(u+εη) ))

∣
∣
∣
ε=0

=ρT (−2 Dx( g+hv) hη+Dx( hη) ·( g+hu)

+Dx( g+hu) ·hη)

=ρT (−2Dx( g+hv) hη+Dx( hη) g+Dx( hη) hu

+Dxghη+Dx( hu) hη)

=ρT (−Dxghη−2Dx( hv) hη+Dx( h η) ·g

+Dx( h η) ·hu+Dx( hu) ·hη)

=ρT
(

−Dxg·hη−2Dx

( m
∑

k=1

hkudk

)

·hη

+Dx

( m
∑

k=1

hkηk

)

·g+Dx

( m
∑

k=1

hkηk

)

hu

+Dx

( m
∑

k=1

hku2k

)

·hη

)
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=−ρTDxghη−2vT

( n
∑

k=1

(Dxhk) ρk

)

hη

+ηT

( n
∑

k=1

(Dxhk) ρk

)

g+ηT

( n
∑

k=1

(Dxhk) ρk

)

hu

+uT

( n
∑

k=1

(Dxhk) ρk

)

hη

=−ρTDxghη−2vT

( n
∑

k=1

(Dxhk) ρk

)

·hη

+gT

( n
∑

k=1

(Dxhk) ρk

)T

η+uT hT·

( n
∑

k=1

(Dxhk) ρk

)T

η

+uT

( n
∑

k=1

(Dxhk) ρk

)

·hη

=
[

−ρTDxg·h−2vT

( n
∑

k=1

(Dxhk) ρk

)

·h

+gT

( n
∑

k=1

(Dxhk) ρk

)T

+uT hT·

( n
∑

k=1

(Dxhk) ρk

)T

+uT

( n
∑

k=1

(Dxhk) ρk

)

·h
]

·η.

Finally,

∂A3

∂u
=

∂

∂ε
A3(u+εη)

∣
∣
∣
ε=0

=−
∂l

∂x

∂

∂ε

(

g+h(u+εη) −g−hv
)∣
∣
∣
ε=0

=−
∂l

∂x
hη.

Therefore,

∂l2

∂u
=uT

[

hT
(

�T+�
)

h+hT

( n
∑

k=1

(Dxhk) ρk

)T

+

( n
∑

k=1

(Dxhk) ρk

)

h
]

−vT
[

hT
(

�T+�
)

h

+2

( n
∑

k=1

(Dxhk) ρk

)

h
]

−ρTDxg·h

+gT

( n
∑

k=1

(Dxhk) ρk

)T

−
∂l

∂x
h.

Solving for the minimizer, ∂l2
∂u

T
= 0, we obtain

∂l2

∂u

T

= 0 ⇒
[

hT
(

�T+�
)

h+hT

( n
∑

k=1

(Dxhk) ρk

)T

+

( n
∑

k=1

(Dxhk) ρk

)

h
]

u =
[

hT
(

�T+�
)

h

+2hT

( n
∑

k=1

(Dxhk) ρk

)T]

v+DxgTρh

−

( n
∑

k=1

(Dxhk) ρk

)

g+hTDxlT

⇒u =
[

hT
(

�T+�
)

h+hT

( n
∑

k=1

(Dxhk) ρk

)T

+

( n
∑

k=1

(Dxhk) ρk

)

h
]−1[

hT
(

�T+�
)

h

+2hT

( n
∑

k=1

(Dxhk) ρk

)T]

v+DxgTρh

−

( n
∑

k=1

(Dxhk) ρk

)

g+hTDxlT. (31)

The terms shown in (29) and (31), together with a penalty
term for the control, are the gradient and Hessian terms used
for the Newton update step that appears in (11).




