
Controllers as Filters: Noise-Driven Swing-Up Control Based on
Maxwell’s Demon

Emmanouil Tzorakoleftherakis, Student Member, IEEE and Todd D. Murphey, Member, IEEE

Abstract— In this paper we show in simulation that if the
controller and the filter are combined into a single compu-
tational unit operating like a “Maxwell’s demon”, controller-
filtered noise can successfully control a system of interest. Using
this method, we perform Monte Carlo tests for the swing-up
control of the cart pendulum, acrobot and pendubot systems.
Results show that filtered noise can indeed act as a swing-
up controller, leading these systems to configurations where
a locally stabilizing controller can complete the stabilization
process. Potential applications of this work include the devel-
opment of reliable, never-failing human-machine interfaces for
rehabilitation, training and skill evaluation.

I. INTRODUCTION

All human-machine interfaces involve control signals with
substantial uncertainty ([1]–[4]). Using the part of the signal
that contributes to the control objective while ignoring the
part of the signal that does not, is important to the interface
design. In this paper, we present a control algorithm that
addresses this issue, and can be extended for utility in
human-machine interface synthesis. The algorithm is based
on Maxwell’s demon, a character introduced by Maxwell in
1871 [5] to contradict the second law of thermodynamics,
which asserts the irreversibility of natural processes, or, as
stated in Clausius’s version: “It is impossible to devise an
engine which, working in a cycle, shall produce no effect
other than the transfer of heat from a colder to a hotter
body” [6].

Maxwell’s demon operates on a box filled with a gas.
Suppose that a partition is placed across the middle of the
box such that the left and right side have equal volume. The
gas was initially in thermal equilibrium at some temperature,
and thus the same temperature is retained in both sides after
the partition is placed, meaning that the gas molecules are
moving at a certain average velocity. The demon observes
the molecules on both sides of the box; if he sees one
approaching that is moving slower than the average, he
allows it through a molecule-sized door to the right side of
the box. Similarly, if a molecule approaches the door with
a speed greater than the average, it ends up on the left side
of the box. After the demon’s work is complete, the left
and right sides of the box are filled with hot and cold gas
respectively. Then, unlike what the second law states, one
could use this temperature difference to run a heat engine by
allowing the heat to flow from the hot side to the cold side.
Although several physicists showed that a more complete

Authors are with the Neuroscience and Robotics Laboratory (N×R)
at the Department of Mechanical Engineering, Northwestern University,
Evanston, IL. Email: man7therakis@u.northwestern.edu,
t-murphey@northwestern.edu

analysis of the whole system, including the demon, does not
violate the second law of thermodynamics [7], the demon
conceptually survived until 1961 when Landauer put an end
to his life [8] by introducing a new concept of “logical
irreversibility”. Still, this paradox has contributed to a new
paradigm over the past century, i.e. the interaction of physics
and information theory.

The method proposed here is similar to Maxwell’s demon,
filtering out parts of a potential input signal that do not
contribute to the control objective. At every moment, our
Maxwell’s demon “looks” at the nominal control input
(controller) to determine whether or not to pass an external
signal to the system as an input (filter). Thus, the controller
and the filter are combined into a single computational unit,
i.e. a “demon”. We show in simulation that noise filtered by
this approach can control a system of interest. To decide
whether a specific noise sample will be accepted or not,
we use the inner product between the control and noise
vectors as a metric. If the inner product is positive and
the angle between the two vectors is small enough, the
noise vector should move the system towards the desired
control direction. The controller/filter we use is a recently
formulated algorithm for control of nonlinear systems called
sequential action control (SAC) presented in [9], [10], [11]
and summarized in Section II. Nevertheless, it must be noted
that the implementation of this method is not SAC-specific;
any controller that can successfully control the system of
interest can be used instead.

As a test platform, we use the swing-up problem of the
cart-pendulum, pendubot and acrobot systems ([9], [12]–
[18]), benchmark examples for nonlinear control methods
and techniques. The objective of swing-up control is to
swing the system to a small neighborhoodWs of the upright
unstable equilibrium, where, often, control authority is ceded
to a locally stabilizing controller, e.g. a linear quadratic
regulator (LQR), that stabilizes the system about the upward
vertical position.

The contribution of this paper is two-fold. First, we
illustrate an interesting application of the Maxwell’s demon
philosophical idea to swing-up control. Secondly, and more
importantly, we provide evidence that noisy inputs can be
a rich source of control authority, which has importance
particularly in rehabilitation and assistive technologies where
an impaired subject may introduce substantial amounts of
noise and structured uncertainty into the control inputs ([1]–
[4]).

The rest of the paper is structured as follows: in Section II
we provide a description of the nonlinear controller that is

Fig. 1. An overview of the SAC control process.

used as a filter in this paper, followed by the rationale behind
noise-driven control explained in Section III. Section IV
demonstrates in simulation how the proposed method can
successfully swing up the inverted pendulum, acrobot and
pendubot systems initialized at the downward stable equilib-
rium. Finally, Section V discusses potential applications of
this method and future work directions.

II. PRELIMINARIES - SEQUENTIAL ACTION CONTROL

In this paper we use sequential action control (SAC),
a recently formulated algorithm for control of nonlinear
systems, as a filter that rejects noise samples not driving the
system to the desired control direction. For convenience, we
will now briefly summarize the work presented in [9]–[11].

SAC enables rapid, closed-loop constrained control syn-
thesis for broad and challenging classes of systems and
objectives. The systems controlled by SAC can be nonlinear
with respect to the state vector, x : R 7→ Rn, but are assumed
to be linear (or linearized) with respect to the control vector,
u : R 7→ Rm, such that

ẋ = f(x, u) = g(x) + h(x)u. (1)

As opposed to alternative methods, SAC is not restricted
to a linear quadratic cost. It applies to general tracking
objectives of the form

Jtrack =

∫ t0+T

t0

l(x(t)) dt+m(x(t0 + T)) , (2)

with incremental cost l(x(t)) and terminal cost m(x(t0 +
T)).1 As a result of its control synthesis process, SAC can
calculate controls that optimally improve (2) even in the
cases where the objective is non-convex or unbounded.

The SAC algorithm follows a cyclic, closed-loop process
illustrated in Fig. 1. As the cycle iterates, SAC sequences to-
gether a piecewise continuous closed-loop response (see the
SAC action signal at the bottom of Fig. 1). Beginning with

1Although (2) lacks a norm on control effort, SAC includes this norm in
the following step, in (4).

prediction, the major steps are described in the subsequent
subsections.

A. Predict

The SAC process begins by predicting the evolution of a
system model from current state feedback. In this step, the
algorithm simulates the system (1) from the current state x0
and time t0, for the finite horizon [t0, t0+T], under a default
(nominal) control u = udefault. The horizon length T , is
a design parameter. Without loss of generality, the default
control throughout this paper is null, udefault , 0. The
term is included in formulas for completeness and indicates
potential shared control implementation.2

The sensitivity of (2) to the state variations along the
predicted trajectory is provided by an adjoint variable,
ρ : R 7→ Rn, also simulated during the prediction step.
The adjoint satisfies

ρ̇ = −Dxl(x)T −Dxf(x, udefault)
T ρ

subject to ρ(t0 + T) = Dxm(x(t0 + T))T . (3)

The prediction phase completes upon simulation of the
state and the adjoint system under udefault control. The
resulting trajectories x(·), ρ(·) will be used in (4).

B. Compute Optimal Actions

Each iteration of the SAC process loop depicted in Fig. 1
returns a set of values for the control vector, the control
application time (Section II-C) and the control duration
(Section II-D). A single vector of control values along with
its associated application time and duration define a SAC
control action as produced at each iteration.

Before computing the control application time and dura-
tion, SAC computes a schedule, u∗ : {t | t ∈ [t0, t0 + T]} 7→
Rm, corresponding to the values of the control action that
would optimally improve performance if applied for some
duration at an arbitrary time t ∈ [t0, t0 + T]. The control
action values in u∗ optimize

Ju =
1

2

∫ t0+T

t0

[
dJtrack
dλ

− αd
]2

+ ‖u(t)‖2R dt ,

with
dJtrack
dλ

= ρ(t)T (f(x(t), u)− f(x(t), udefault)) (4)

in driving expected change in cost (sensitivity dJtrack

dλ) to a
user specified design parameter αd ∈ R−. This parameter
allows the designer to influence how aggressively each
control action improves the current trajectory cost.

Based on the simulation of the dynamics (1), and (3)
completed in the prediction step (Section II-A), the control
schedule that minimizes (4) is provided as a closed-form
expression,

u∗ = (Λ +RT)−1
[
Λudefault + h(x)T ραd

]
, (5)

with Λ , h(x)T ρρTh(x).

2As an example, udefault may be an optimized feedforward controller
providing a nominal trajectory around which SAC would provide feedback.

C. Decide When to Act

The SAC algorithm optimizes a decision variable not
normally included in control calculations – the choice of
when to act. The curve u∗ provides the values of possible
actions that SAC could take at different times to optimally
improve system performance from that time. The algorithm
chooses one of these actions to apply at each iteration of the
SAC process and then re-computes the curve u∗ from current
state feedback at the next iteration. In choosing when to act
(choosing an action from curve u∗), SAC searches u∗ for a
time that optimizes the trade-off between the cost of waiting
and the efficacy of control at that time according to,

Jt(τ) = ‖u∗(τ)‖+
dJtrack
dλ

∣∣∣∣
τ

+ (τ − t0)β . (6)

The parameter β ∈ R is usually a fixed value, β ∈ [1, 2],
encoding the cost of waiting.

D. Decide How Long to Act

After computing the values of potential optimal actions
from (5) and choosing when to act based on (6), the final
step in synthesizing a SAC action is to choose how long to
act (select the control duration). It is typically assumed that
actions will last for short duration as the control synthesis cy-
cle is fast and the next action is prepared for implementation
quickly. For these reasons, SAC implementations apply a line
search process [19]. Starting with a (short) initial duration,
λ = λ0, the effect of the control action is simulated from
(1) and (2). If the simulated action improves cost (2), the
duration is selected. If this is not the case, the duration is
reduced and the process repeated.

After computing the duration, λ, the SAC action is fully
specified (it has a value, an application time and a duration).
As an additional step, when udefault = 0, actions can be
directly saturated to satisfy any min/max control constraints
of the form umin,k < 0 < umax,k ∀k ∈ {1, . . . ,m}
(see [9] for proof). By iterating on this process (Section II-
A until Section II-D), SAC rapidly synthesizes piecewise-
continuous, constrained control laws for nonlinear systems.
For more information about SAC, the reader is encouraged
to consult [9]–[11].

III. NOISE-DRIVEN CONTROL BASED ON MAXWELL’S
DEMON

This section describes the approach behind noise-driven
control. Our Maxwell’s demon can be implemented by
combining a controller and a filter into a single computational
unit that filters out noise not driving the system to the desired
control direction.

Assume that at sampling intervals, noise enters a system,
i.e. a sample noise vector ε ∈ Rm is drawn from a
distribution every ts seconds. Further, suppose that at each
time instance a vector of potential control inputs is computed
based on a controller (in this paper we use SAC). Note that
the controller should be capable of driving the system by
itself according to the desired specifications. If the inner
product between the control and the noise vector is positive,

Algorithm 1 Noise-driven control using Maxwell’s demon

• Select noise distribution, mean µ, standard deviation σ
and associated parameters accordingly.

• Initialize current time t0, sampling time ts, final time
tf , angle tolerance γ.

while t0 < tf do
Sample ε from noise distribution
Compute controller value u
Calculate inner product 〈u, ε〉
Calculate angle φ between u and ε
if 〈u, ε〉 > 0 and |φ| ≤ γ

Use ε as current input, ucurr = ε

else
Completely “reject” ε, ucurr = 0

end if
Apply ucurr for t ∈ [t0, t0 + ts]
t0 = t0 + ts

end while

and the corresponding angle of the vectors is small, then the
effect of noise on the system should be similar to that of the
control vector. In that case, noise is allowed to pass through
the filter/controller. If any of the above two conditions is
violated, noise is “rejected” (i.e. no input applied to the
system). In theory, noise filtered by this approach should
drive the system towards the desired control direction; in case
the “Maxwell’s demon” is based on an optimal controller
in particular, these directions will improve the objective.
This process is illustrated in Algorithm 1. In the following
Section, we use Algorithm 1 in swing-up control and provide
evidence that noisy inputs can be a rich source of control
authority.

IV. SIMULATION RESULTS

This section applies the proposed algorithm in simulation
examples where SAC-filtered Gaussian noise is used as a
control input on-line aiming to swing up three benchmark
systems, i.e. the cart pendulum, the acrobot and the pendubot.
Once the system is within a specified region Ws, the control
switches from SAC-filtered noise to an LQR that completes
the stabilization process about the upward vertical equilib-
rium (region Wo). Regions Ws and Wo are selected in the
following paragraphs.

For each of the three systems, we performed a Monte
Carlo test of 500 simulations. For all simulations, t0 = 0s
and tf = 25s; if noise could not swing up the system within
25 seconds, i.e. x(25) 6∈ Ws, the trial was considered failed.
Similarly there were some cases whenWs was reached right
before the 25s limit not leaving enough time to the LQR
for stabilization, i.e. to reach Wo. These cases were noted
but they are not indicative of the algorithm’s performance.
Because there is only one control input in these systems,
the control and noise vectors were always parallel and their

relative angle, φ was either 180◦ or 0◦; thus the parameter γ
of Algorithm 1 was set to 0. Moreover, for the SAC objective
(2) we used l(x(t)) = 1

2x(t)TQx(t) – a typical quadratic
cost – and m(x(t0 + T)) = 1

2x(t0 + T)TP x(t0 + T). The
values of Q, P and T used in the simulations are shown in
Table II.

To assess the algorithm’s performance, in each trial we
recorded the switching time, i.e. the time the system reached
Ws, and the stabilization time, i.e. the timeWo was reached.
Furthermore, to evaluate the resulting trajectories, we defined
a trajectory cost J as:

J =

∫ 25

0

1

2
x(t)TQ1 x(t) dt, with Q1 = I4×4. (7)

For consistency, this metric was calculated only for trajec-
tories that reached both Ws and Wo. Finally, the resulting
histograms of the switching time, stabilization time and cost
J were compared with their corresponding nominal values,
that were calculated by applying the actual SAC output to
the system (instead of noise).

A. Cart-Pendulum System

The equations that describe the underactuated cart-
pendulum system [17], [18] (see Fig. 2a) are given by:

ẋ = f(x, u) =

θ̇

g
l sin θ + u cos θ − b

ml2 θ̇
ẋc
u

 (8)

TABLE I
PARAMETER VALUES FOR SYSTEM DYNAMICS

Cart pendulum (Fig. 2a) Fig. 2b Acrobot Pendubot

Dynamics Value Dynamics Value Value

m 0.2 kg m1 1 kg 1 kg
l 1 m l1 1 m 2 m
b 0.01 Ns/m m2 0.5 kg 0.5 kg
g 9.81 m/s2 l2 2 m 1 m

g 9.81 m/s2 9.81 m/s2

TABLE II
PARAMETER VALUES FOR SAC AND ALGORITHM 1

SAC Cart Pendulum Acrobot Pendubot

Q from (2) [200, 0, 100, 50]∗ [1000, 30, 0, 0]∗ [1000, 30, 0, 0]∗

P from (2) 0 [50, 150, 0, 0]∗ [50, 200, 0, 0]∗

R from (4) 0.3 0.1 0.1

αd −5Jtrack −5Jtrack −5Jtrack
T 1.2s 1.2s 1.2s

Algorithm 1 Cart Pendulum Acrobot Pendubot

t0 0s 0s 0s

tf 25s 25s 25s

ts 0.02s 0.0025s 0.0025s

γ 0 0 0

µ 0 0 0

σ 10 18 40

* Diagonal matrix.

a b

Fig. 2. Schematic of the cart pendulum system (a) and the acrobot/pendubot
(b).

where the state vector consists of the angular position and
velocity of the pendulum and the position and lateral velocity
of the cart, x = [θ θ̇ xc ẋc]

T ∈ X , the input u is the lateral
acceleration of the cart, g is the acceleration due to gravity,
b is the damping coefficient, l is the pendulum length and m
the mass at the tip, as shown in Fig. 2a.

The parameters of the dynamics, SAC and Algorithm 1
that were used in the simulations are given in Tables I and
II. The regions of interest Ws and Wo were selected as: 3

Ws =
{
x ∈ X : |θ| < 0.8 rad ∧ ˙|θ| < 1 rad/s

}
(9)

Wo = {x ∈ X : ∧ |xi| < 0.02, i = 1, 2, 3, 4} (10)

and the LQR gains calculated offline about the inverted
unstable equilibrium for final stabilization are:

K =
(
52.76 16.98 − 3.16 − 6.14

)
. (11)

Figure 3 shows the result of a sample simulation. By
observing the first two plots, the resemblance between
Maxwell’s demon and our controller/filter is obvious; SAC
rejects noise samples that would otherwise lead the system
to a different direction.

The results of the Monte Carlo test are shown in the first
column of Fig. 4. It can be seen that SAC-filtered noise
was able to successfully lead the system to the switching
region Ws in all 500 trials (0% failure rate). Additionally,
the histogram ranges of the switching time, stabilization time
and metric J were similar to their nominal values, that were
calculated by applying the actual SAC output to the system
(instead of noise).

B. Acrobot

For the two-link planar robot shown in Fig. 2b, the
simplified dynamics in the absence of friction, assuming
point masses and a torque input at the elbow joint ([13],
[14]) are given by:

M(θ)θ̈ +H(θ, θ̇) +G(θ) = Bu (12)

3In (10), xi is the ith element of the state vector x.

0 5 10 15

-20

-10

0

10

20

30

Noise-drivenLcartLpendulumLinversion
A

cc
el

er
at

io
nL

in
pu

t

SAC
SAC-filteredLnoise
LQR

0 5 10 15

−20

−10

0

10

20

30

0 5 10 15

−4

−2

0

2

4

6

timeL(s)

S
ta

te
s

A
cc

el
er

at
io

nL
in

pu
t

GaussianLnoise
SAC-filteredLnoise
LQR

SwitchingLtime

Fig. 3. Sample simulation for the cart pendulum system. The top two plots
demonstrate the similarity of our controller/filter with Maxwell’s demon;
SAC as a filter rejects noise samples that would otherwise lead the system
to a different control direction.

where u is the torque input, θ = [θ1 θ2]T ,

M(θ) =

(
M1,1 M1,2

M2,1 M2,2

)
=

(
α1 + α2 + 2α3 cos θ2 α3 cos θ2 + α2

α3 cos θ2 + α2 α2

)
(13)

H(θ, θ̇) =

(
H1

H2

)
=

(
−2α3θ̇1θ̇2 sin θ2 − α3θ̇

2
2 sin θ2

α3θ̇
2
1 sin θ2

)
(14)

G(θ) =

(
G1

G2

)
=

(
−β1 sin θ1 − β2 sin(θ1 + θ2)

−β2 sin(θ1 + θ2)

)
(15)

B =

(
0
1

)
(16)

and

α1 = (m1 +m2)l21, α2 = m2l
2
2, α3 = m2l1l2

β1 = (m1 +m2)gl1, β2 = m2gl2.
(17)

Thus, we can rewrite (12) as:

ẋ = f(x, u) =

(
θ̇

−M−1(H +G) +M−1Bu

)
(18)

with x = [θ θ̇]T ∈ X . The rest of the parameters are seen
in Fig. 2b and their values, along with the parameters of
SAC and Algorithm 1 that were used in the Monte Carlo
simulations are given in Tables I and II. The regions of
interest were selected as:

Ws =
{
x ∈ X : |θ1,2| < 0.8 rad ∧ |θ̇1,2| < 2 rad/s ∧

θ1θ2 < 0
}

(19)

and Wo was the same as in (10). The corresponding LQR
gains for final stabilization are:

K =
(
−257.13 − 120.1 − 103.77 − 59.22

)
. (20)

The results of the Monte Carlo test are shown in the second
column of Fig. 4. Unlike the cart pendulum case, there was
8% probability of swing-up failure, i.e. noise did not lead
the system to Ws 40 out of the total 500 trials. Even though
this probability is relatively low, it is possible that it can be
reduced further by selecting a finer estimate of the switching
region Ws. In other words, given that all trajectories that
reached Ws eventually reached Wo as well, the region Ws

is most likely underestimating the LQR region of attraction.
Finally, regarding the nominal values calculated using the
actual SAC output (red dashed lines), it can be seen that
they were close to the corresponding histogram ranges as
expected.

C. Pendubot

The dynamics of the pendubot ([15], [16]) are also given
by (12)-(18), with B = (1 0)T , i.e. the torque input is
applied at the shoulder joint. The parameters of the dynamics,
SAC and Algorithm 1 used in the simulations are given in
Tables I and II.
Wo was the same as in (10) while Ws was:

Ws =
{
x ∈ X : |θ1,2| < 0.35 rad ∧ |θ̇1| < 0.45 rad/s ∧

|θ̇2| < 0.75 rad/s ∧ θ1θ2 < 0
}
. (21)

Upon linearization about the origin, the LQR gains we
obtained are the following:

K =
(
−156.66 − 90.18 − 156.62 − 46.78

)
. (22)

The results of the Monte Carlo test are shown in the third
column of Fig. 4. There was only 1% probability of failure
to reachWs. However, because the switching time histogram
had high variance (higher than the two previous cases), 5% of
the trials that reached Ws within 25s (25 out of 495), failed
to reach Wo as well. Specifically, a significant amount of
trials entered Ws when t > 20s, and as a result, the LQR

0 5 10 15 20 25
0

5

10

15

20

25

F
re

qu
en

cy

0 5 10 15 20 25
0

5

10

15

20

25

F
re

qu
en

cy

Nominal
stabilizationvtime

30 35 40 45 50 55 60 65 70
0

5

10

15

20

25

F
re

qu
en

cy

0 5 10 15 20 25
0

50

100

150

200

250

0 5 10 15 20 25
0

10

20

30

40

50

60

70
→

50 100 150 200 250 300 350 400 450
0

10

20

30

40

50

60

Simulationvtimevpsd

Simulationvtimevpsd

Simulationvtimevpsd

Simulationvtimevpsd

F
re

qu
en

cy
F

re
qu

en
cy

F
re

qu
en

cy

Costvvalue Costvvalue

TimevuntilvswitchvtovLQRvpvvvvvvvregiond

Cartvpendulum Acrobot

Nominal
stabilizationvtime

Nominalvcostvvalue
Nominalvcostvvalue

Nominalvswitchingvtime

Nominal
switching

time

0 5 10 15 20 25
0

10

20

30

40

50

0 5 10 15 20 25
0

10

20

30

40

0 50 100 150 200 250 300 350
0

10

20

30

40

InputvisvSACffilteredvnoise

Pendubot

Simulationvtimevpsd

Simulationvtimevpsd

Costvvalue

CostvJvforvstabilizingvtrajectories

Timevuntilvcompletevstabilization

TimevuntilvswitchvtovLQRvpvvvvvvvregiond
InputvisvSACffilteredvnoise

TimevuntilvswitchvtovLQRvpvvvvvvvregiond
InputvisvSACffilteredvnoise

Failedvtovreachvvvvvvvvwithinv25s

pbothvvvvvvvvandvvvvvvvvreacheddv

pbothvvvvvvvvandvvvvvvvvreacheddv
CostvJvforvstabilizingvtrajectories

pbothvvvvvvvvandvvvvvvvvreacheddv
CostvJvforvstabilizingvtrajectories

pbothvvvvvvvvandvvvvvvvvreacheddv

Timevuntilvcompletevstabilization
pbothvvvvvvvvandvvvvvvvvreacheddv

Timevuntilvcompletevstabilization
pbothvvvvvvvvandvvvvvvvvreacheddv

Nominal
switching

time

Failedvtovreachvvvvvvvv
vvvvvwithinv25s

Nominal
stabilizationvtime

Nominalvcostvvalue

Failedvtovreachvvvvvvvv
vvvvvwithinv25s

F
re

qu
en

cy
F

re
qu

en
cy

F
re

qu
en

cy
Fig. 4. Results of Monte Carlo simulations; each column corresponds to a different system. The nominal values of switching time, stabilization time
and cost J (red dashed lines) are calculated by applying the actual SAC output to the system (instead of noise). For the pendulum system, the swing-up
control was successful in all 500 iterations. For the acrobot, there was 8% probability of failure. Since all trajectories that reached Ws eventually reached
Wo as well, a potential explanation is that Ws is underestimating the LQR region of attraction. Hence, for larger Ws, this probability will most likely
be lower. Finally, for the pendubot there was 1% probability of failure to reach Ws. Additionally, 5% of the trials that reached Ws within 25s (25 out
of 495), failed to reach Wo as well. This can be explained by the high variance observed in the switching time histogram. A significant amount of trials
entered Ws when t > 20s, and as a result, the LQR did not have enough time to lead the system to Wo. This is an artifact of the 25s time limit and is
not indicative of the algorithm’s performance; for larger tf values, the number of trials failing to reach Ws and Wo would be expected to drop.

did not have enough time to lead the system to Wo. This is
an artifact of the 25s time limit and is not indicative of the
algorithm’s performance; for larger tf values, the number of
trials failing to reachWs andWo would be expected to drop.
Finally, due to the high variance observed, the nominal values
were – within reason – smaller than the average histogram
value.

V. DISCUSSION AND CONCLUDING REMARKS

In this paper, we presented an algorithm that applies the
Maxwell’s demon philosophical idea to swing-up control. At
every moment, our Maxwell’s demon “looks” at a control
input and determines whether or not to pass a signal to the
control system as an input. The algorithm can work with any
controller that can successfully control the system of interest.
Additionally, we showed in simulation that, if filtered with
Algorithm 1, noisy inputs can be a useful source of control
inputs, even for demanding swing-up tasks.

The effect of the noise distribution and standard deviation
σ (or signal-to-noise ratio) was not considered and will be

examined in our future work. However, as a rule of thumb,
the value of σ should be comparable to the value of the
nominal controller’s output (in this case, SAC). Moreover,
Algorithm 1 can be easily modified to account for higher
σ values, by adding a saturation step for the noisy input
after the inner product test. The sampling time, ts, is another
parameter that can affect the algorithm’s performance. In
general, the smaller the sampling time, the more reliable
the algorithm. Furthermore, for the swing-up problem, if ts
is small enough, noise can completely stabilize the system
without switching to a locally stabilizing controller. This
is demonstrated for the simulated cart pendulum system
online at https://vimeo.com/nxrlab/maxdemon. Here, SAC
was initially used as the controller/filter, and when the system
reached Ws, potential noise inputs were filtered by an LQR.

Although noise cannot be used in practice to directly
control a real system because it requires motors to gen-
erate non-smooth signals, this result can be used towards
the development of reliable software interfaces for human-

machine interactions. In our future work, we will examine the
feasibility of our method as an interface in a human subject
study. Potential fields of application include human training
[20], skill evaluation and most importantly, rehabilitation
and assistive technologies where sensory-motor deficits can
result in involuntary tremor and spasticity, which introduce
substantial amounts of noise and structured uncertainty into
the control inputs([1]–[4]).

In a practical application of Algorithm 1 as a human-
machine interface, ε represents the user input. In this aspect,
the user input will have either a positive or a negative inner
product with the control vector u. To minimize threat to the
user and also to the system, that originates from novice or
involuntary actions, if the inner product is negative, the user’s
input is “rejected” and the system input is set equal either
to zero or to the nominal control value. In the latter case,
this will result in an interface that potentially never fails,
serving both training and safety purposes. Additionally, the
percentage of “accepted” user actions (PAA) can be used as
a metric that evaluates expertise or even training progress.
For instance, in case of robot-assisted stroke rehabilitation
[3], the progress of stroke survivors can be monitored by
recording the PAA. Similarly, Algorithm 1 can be applied to
lower extremity exoskeletons, to filter out spastic movements
after spinal cord injury.

Lastly, as mentioned in Section II, SAC can calculate
controls that optimally improve (2) even in the cases where
the objective is non-convex or unbounded. Hence, if there
are multiple objectives defined for one system, each one
associated with a separate SAC process, Algorithm 1 can be
used to tie a user’s input to the nearest SAC controller, and
thus objective. Consequently, the controller/filter will have a
dual role; it will estimate what the user intent is as well as
only allow acceptable control actions to be filtered through
to the system.

ACKNOWLEDGMENT

This material is based upon work supported by the
National Science Foundation under Grant CNS 1329891.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] B.-C. Chen and H. Peng, “Differential-braking-based rollover preven-
tion for sport utility vehicles with human-in-the-loop evaluations,”
Vehicle System Dynamics, vol. 36, no. 4-5, pp. 359–389, 2001.

[2] J. Tang, Q. Zhao, and R. Yang, “Stability control for a walking-chair
robot with human in the loop,” International Journal of Advanced
Robotic Systems, vol. 6, no. 1, pp. 47–52, 2009.

[3] H. Kazerooni, J.-L. Racine, L. Huang, and R. Steger, “On the control
of the berkeley lower extremity exoskeleton (BLEEX),” in Proceedings
of the IEEE International Conference on Robotics and Automation
(ICRA), 2005, pp. 4353–4360.

[4] M.-S. Ju, C.-C. Lin, D.-H. Lin, I.-S. Hwang, and S.-M. Chen, “A
rehabilitation robot with force-position hybrid fuzzy controller: hybrid
fuzzy control of rehabilitation robot,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 13, no. 3, pp. 349–358,
2005.

[5] H. Leff and A. F. Rex, Maxwell’s Demon 2 Entropy, Classical and
Quantum Information, Computing. CRC Press, 2002.

[6] A. B. Pippard, Elements of classical thermodynamics: for advanced
students of physics. Cambridge University Press, 1957.

[7] T. Sagawa, “Thermodynamics of information processing in small
systems,” Progress of Theoretical Physics, vol. 127, no. 1, pp. 1–56,
2012.

[8] R. Landauer, “Irreversibility and heat generation in the computing
process,” IBM Journal of Research and Development, vol. 5, no. 3,
pp. 183–191, 1961.

[9] A. R. Ansari and T. D. Murphey, “Sequential action control: Closed-
form optimal control for nonlinear systems,” IEEE Transactions on
Robotics. In Review. http://nxr.northwestern.edu/publications, In Re-
view.

[10] A. Mavrommati, A. Ansari, and T. Murphey, “Optimal control-on-
request: An application in real-time assistive balance control,” in Pro-
ceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA). Accepted. http://nxr.northwestern.edu/publications,
2015.

[11] A. R. Ansari and T. D. Murphey, “Control-on-request: Short-
burst assistive control for long time horizon improvement,”
in American Control Conference (ACC). Accepted.
http://nxr.northwestern.edu/publications, 2015.

[12] I. Fantoni, R. Lozano, and M. W. Spong, “Energy based control of the
pendubot,” IEEE Transactions on Automatic Control, vol. 45, no. 4,
pp. 725–729, 2000.

[13] X. Xin and T. Yamasaki, “Energy-based swing-up control for a
remotely driven acrobot: Theoretical and experimental results,” IEEE
Transactions on Control Systems Technology, vol. 20, no. 4, pp. 1048–
1056, 2012.

[14] M. W. Spong, “The swing up control problem for the acrobot,” IEEE
Control Systems, vol. 15, no. 1, pp. 49–55, 1995.

[15] Y. Orlov, L. T. Aguilar, L. Acho, and A. Ortiz, “Swing up and
balancing control of pendubot via model orbit stabilization: algorithm
synthesis and experimental verification,” in Proceedings of the IEEE
Conference on Decision and Control (CDC), 2006, pp. 6138–6143.

[16] M. W. Spong and D. J. Block, “The pendubot: A mechatronic system
for control research and education,” in Proceedings of the IEEE
Conference on Decision and Control (CDC), vol. 1, 1995, pp. 555–
556.

[17] C.-W. Tao, J.-S. Taur, T. W. Hsieh, and C. Tsai, “Design of a
fuzzy controller with fuzzy swing-up and parallel distributed pole
assignment schemes for an inverted pendulum and cart system,” IEEE
Transactions on Control Systems Technology, vol. 16, no. 6, pp. 1277–
1288, 2008.

[18] K. J. Åström and K. Furuta, “Swinging up a pendulum by energy
control,” IFAC, San Francisco, vol. 13, 1996.

[19] T. M. Caldwell and T. D. Murphey, “Projection-based switched system
optimization: Absolute continuity of the line search,” in Proceedings
of the IEEE Conference on Decision and Control (CDC), 2012, pp.
699–706.

[20] E. Tzorakoleftherakis, F. A. Mussa-Ivaldi, R. A. Scheidt, and T. D.
Murphey, “Effects of optimal tactile feedback in balancing tasks: A
pilot study,” in American Control Conference (ACC), 2014, pp. 778–
783.

