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Abstract. This appendix provides the complete O(n) algorithms to compute the
Newton direction for higher-order variational integrators and the proofs of the
propositions in the paper “Efficient Computation of Higher-Order Variational In-
tegrators in Robotic Simulation and Trajectory Optimization” [1], accepted to
the 13th International Workshop on the Algorithmic Foundations of Robotics
(WAFR’18). It is assumed that the reader has read the original paper and knows
the problem statements and the notation used. The numbering of the equations,
algorithms, propositions, etc., is consistent with the numbering used in the origi-
nal paper.

A Introduction

In the paper “Efficient Computation of Higher-Order Variational Integrators in Rob-
otic Simulation and Trajectory Optimization” [1], we present O(n) algorithms to eval-
uate the discrete Euler-Lagrange (DEL) equations and compute the Newton direction
for solving the DEL equations, and O(n?) algorithms to linearize the DEL equations.
As an appendix to [1], this document provides the complete O(n) algorithms to com-
pute the Newton direction for higher-order variational integrators and the proofs of the
propositions in [1], which are not covered in the original paper due to space limitations.

In this appendix, we begin with the complete O(n) algorithms to compute the New-
ton direction in Section B. In Section C, we give an overview of preliminaries used in
the algorithms and proofs. Propositions 1 to 4 in [1, Sections 3 and 4] to compute the
higher-order variational integrators are proved in Section D.

For implementation only, the reader only needs to read Algorithms B.1 and B.2 in
Section B as well as Algorithms 1 to 3 in [1, Sections 3 and 4]. Sections C and D are
not required to read as they present the proofs of the propositions in [1] that do not
necessarily aid in implementation.

Even though most of the important content in [1] is reiterated, we still advise the
reader to read the original paper to know the problem statements and the notation used.
Moreover, as mentioned in the abstract, the numbering of the equations, algorithms,
propositions, etc., is consistent with the numbering used in [1]. Therefore, the original
paper will not be explicitly cited in the rest of this appendix when we make references
to anything in it.



B The O(n) Algorithms to Compute the Newton Direction

In this section, we present Algorithms B.1 and B.2 to compute the Newton direc-
tion for higher-order variational integrators. The algorithms are self-contained and we
refer the reader to Section C.3 for differentiation on Lie groups that is used to compute

lef “in Eq. (B.3b) of Algorithm B.2. The correctness and the O(n) complexity of
Algorithms B.1 and B.2 are proved in Section D.2, however, this is not required to read
for implementation. We remind the reader that 5" is the Newton direction for ¢*7,
and rf ¢ is the residue of the DEL equations Egs. (7a) and (7b). Moreover, from Proposi-
tion 2, Algorithms B.1 and B.2 assume that the inverse of the Jacobian 7 ~1(g") exists,
k,« 6]4:,(17 uk@)

and Ff’a and Q" can be respectively formulated as ff’a = F?’a(gi , U,
and Q)" = Q" (", 4" uh*).

There are a number of quantities, such as Df’“”, st,ow, Cik’a, Hik”y, etc., which are
recursively introduced in Algorithm B.2 to compute the Newton direction. Since there
is no influence on the implementation of the algorithms as long as these quantities are
correctly computed, we leave the explanation of their meaning to Section D.2. Similarly,
the detailed explanation of ’f"’ and gﬁf’p in Algorithm B.1 is left to Sections C.1
and C.2, respectively. For purposes of implementation, the reader only needs to know

that these quantities are recursively computed through Algorithms B.1 and B.2.

Algorithm B.1 Recursive Computation of the Newton Direction

I: initialize g&"® = Tand 75 = 0
2: fori=1-—ndo

33 fora=0— sdo
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8:  end for '

9: end for

10: fori=n — 1do

11: use Algorithm B.2 to evaluate
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12: end for

13: initialize ﬁlg’” —0and gglgﬁp —0

14: for: =1 — ndo
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15: f0r7—1—>sdo

. ko _ k,vp k.p
16: 0q;” Z X; 5vpar( )
17: end for
18: forv =1— sdo .

_k _k, <k k,
19: n; = npa”r(i) +8;7 - 0q;”
20: end for
21: forp=0— sdo
S

22: 8" = L Z b - 8q)
23: Sohr = 6vp;{j ot T A ¥
24: end for
25: end for

Algorithm B.2 Recursive Computation of the Newton Direction — Backward Pass
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C Preliminaries

In this section, we present additional preliminaries used in Algorithms B.1 and B.2
and the proofs of Propositions 1 to 4. In Section C.1, we extend the contents of Sec-
tion 2.3 for the computation of variations and derivatives. In Sections C.2 and C.3, we
respectively introduce the notion of the spatial variation for spatial quantities and the
differentiation on Lie groups, which are mainly used in Algorithms B.1 and B.2 and the
proof of Proposition 2.

C.1 The Tree Representation Revisited

In addition to the computation of rigid body dynamics as those in Section 2.3, the
tree representation can also be used to compute the variations and derivatives.
As is known, in the tree representation, the configuration g; € SFE(3) of rigid body
118
gi = gpar(i)gpar(i),i((h) (C.1)

in which gpar(3),i(¢i) = 9par(i),i(0) exp(Sig;) and S; is the body Jacobian of joint i
with respect to frame {¢}. In addition, the spatial Jacobian of joint 7 with respect to
frame {0} is B
S; = Ad,, S, (C.2)
in which S; is constant by definition. Using Eqgs. (C.1) and (C.2) as well as Adg, S; =
('S,_,l\/ PR L —1\v
9:5:g; ") ", we obtain 7j; = (6g;g; )" as

= ﬁpar(i) + EZ ’ 5(]27 (C.3)
or equivalently,
m,=Si0q;+ » 8;-dg (C4)
j€anc(z)



and furthermore,

(L) = {3 emrop) .
dq; ™" 0  otherwise, )
dg; _1>V Si jedes(i)U{i},

—g, = C.5b
( Jq; Ji 0 otherwise. (C.5b)

In addition, from Egs. (C.2) and (C.3), 6Ad,, = ady, Adg, and adgigi = 0, we obtain
5§7; = adﬁigi = —adglﬁl = adﬁpar(i)gi = —adgﬁpar(l) (C6)

Moreover, as a result of Egs. (C.4) to (C.6), we further obtain

05 _ [adg S j € anc(i), (C.7a)
dq; 0 otherwise,
95, _ [adg,5; gedeﬁ(w, (C.7b)
dq; 0 otherwise.

Since the spatial velocity v; of rigid body i is
=8¢+ Z gj'(jj
j€anc(4) (C.8)
= Tpar(i) + Si * Gis
we obtain B B B B
00 =08 -G+ 8- 0Gi+ Y (6854 +S; - 0dy)
j€anc(z)
= 0Vpar(i) + 65+ Gi+ S+ 6¢;.
Substitute Eq. (C.6) into the equation above, the result is

00; = ady, i - ¢+ Si - 6Gi + Y (admgj “4j+ S 5C]j>
j€anc(%) (C9)
= 5fpar(i) + ad;,igi S q; + gi - 0¢;.

From Egs. (C.6) to (C.9), we obtain

31‘,1. _ S; je anc'(l) u{i}, (C.10a)
04, 0  otherwise,
ov; _ )5S J€ deé(i) u{i}, (C.10b)
94, 0  otherwise,
and
@ _ adgj (ﬁi - Ej) j € an(':(i) U {Z}’ (C.11a)
dq; 0 otherwise,



(C.11b)

85]‘ N adgi (fj — 51',) ] S dGS(l) U {Z},
0q; o otherwise.

In addition, from Egs. (C.2) and (C.8), Ad;, = ady, Adg, and adgigi = 0, we obtain

?i = ?Ldﬁ7 S = —adgi@i = adgpar(i)gi = —adgﬁpar(i). (C.12)
As for the spatial inertia matrix M; = Adg_iTMiAd;, algebraic manipulation shows
that

OM; = —adl - M; — M; - ady,, (C.13)
and from Eqgs. (C.3) to (C.5) and Eq. (C.13), we obtain

_ T =7 b3 ; ; ]
oM, _ [~adg M = Miads, j & anc(i) U {i} (C.142)
g 0 otherwise,
_ T 575 AT ; 3 )
OM; _ ) —adg M; = Mjadg,  j & des(i) U{il, (C.14b)
9q; 0 otherwise.

In Sections D.1 to D.4, Eq. (C.3) to (C.14) will be used to prove Propositions 1 to 4.

C.2 The Spatial Variation

In this subsection, we introduce the spatial variation 6 (-) that is used in Algo-
rithms B.1 and B.2 and the proof of Proposition 2. Note that the notion of the spatial

variation 4 (-) only applies to the spatial quantities (-) of T, SE(3) or T;*SFE(3) that are
described in the spatial frame.
Ifa,a € T.SE(3) are related as @ = Ad,a in which g € SE(3), we have

§a = Adyda + adya

in which 7 = (§gg~')V. For numerical simplicity, it is sometimes preferable to have
the variations of @ and a still related by Ad,. Therefore, we define the spatial variation
da to be

éa = éa — adza (C.15)

such that 6@ = Ad,da as long as @ = Ad,a. In a similar way, ifb",b* € T*SE(3) are
related as b — Ad;Tb*, we obtain

T* —T ¢c1.% TT*
5" = Ad;T6b* — adZb".
Similar to Eq. (C.15), the spatial variation 85" is defined to be

50" =0b +adlb” (C.16)



such that §b° = Ad,"6b* as long as b= Ad, "b*. In addition, note that §(b*" a) =
T T ——xT T —_ —xT _ T
0b* a+b*"da=90b a+b daandd(b a)=0(b*" a), we have

5@ @) =5 a+v sa. (C.17)

In general, the spatial variations 36 are the infinitesimal changes of spatial quanti-
ties in either the Lie algebra T,.SE(3) or the dual Lie algebra T, SE(3) after canceling
out the influences of the frame change.

In Section 3, we have a number of spatial quantities that are defined in 7. SE(3)
and T} SE(3), whose spatial variations § (-) can be computed in the tree representation.

Following Egs. (C.2), (C.6) and (C.15), for §f’a = Adg@,aSZ—, the spatial variation
—=—=k,a ’
05,7 is

g

K2

=0 (C.18)
though 53? = adﬁk,agf’a is usually not zero. In addition, according to Egs. (C.9)
and (C.15), we have

k,« k,« <k ko k. ko —k,«
0" = =0V T adﬁ?aSi ¢+ S - 6gT — adﬁf,avi

Substitute Egs. (C.3) and (C.8) into the equation above to expand adﬁ@,aff’o‘ and apply
Egs. (C.6) and (C.12), it can be shown that

Sohe = Fphe LGN g 4 5

i) 20 ek, (C.19)

—k, —k,a . . . o

In terms of ﬁf’o‘, T';" and 2] in Eq. (7), which are spatial quantities in 77* S E(3),
we can still implement the tree representation to compute the spatial variation. Accord-
ing to Definition 1, we have

ot = 6(NT; T+ Y ot
]Echd(z)

From Egq. (C.16), the spatial variation gﬁf’a is
<. « k ai oz —k,«
5ﬁf’ =6(M k Z 6u + ad%,auf’
j€chd(z)

. _ka  wpRO0_ka —k,o _k,a _ —ka gho k,a
Using i3, = M0, + X jcnay By and ;" =1,% = S;7 - 6¢;7, we have

oy = (M "0E) + ad o (M5

> <6ka+adkauj — adgea i 5q§’a> (C.20)
j€chd(z)



As a result of Eqgs. (C.13) and (C.15), (M. el a)+ad m( favk “)is
“Fk.a_k o T —7k.0_k o _ 7o o ka —k,a
(M, 0,7 + adoko (M, 7)) = M,;” (60, — ad_.«T; ")
m, n;
i o (C.21)
=M, 5u,.

From Egs. (C.16) and (C.21) and adgk,aﬁ;?’a - ad/ijk,m?f’a, Eq. (C.20) is simpli-
J J
fied to

< o R0k o NeY —k,a [eY
ke =Sk S (e el 0 )
J€chd(i)

3 N (C.22)
%k, ~—k,x D gk« k,a
jEchd(s)
In a similar way, for the spatial variation gff’a, we obtain
ST?Q _ gff’a I Z (5F§’ _ adi R k, a>
j€Echd(i) (€.23)
<=k, <R D ¢ ko .
=0F, "+ > (0T —ad2 MS] - 5q5 ).
j€Echd(i)

As for 27 = w At - adleo I+ T2, from Egs. (C.15) and (C.16), algebraic
manipulation shows that '

—k,a

50" =012, +adl, . 12}

= w At (adlin - 5" + ad] i) + 0T (C.24)

w? At - (adly.. - 50" + adD. . 501) + 3T

In Section D.2, Egs. (C.18), (C.19) and (C.22) to (C.24) will be used to prove Propo-
sition 2.

C.3 Differentiation on Lie Groups

For an analytical function f : R™ — R, the directional derivative at x € R™ in the
direction dx is defined to be

d
Df(z) -0z = —f(xz+1t-o0x)
dt =0
T
in which D (2) = [ 2L 2L . 201" e e,
In a similar way, we might define the directional derivative on Lie groups using the
Lie algebra and the exponential map as follows.



Definition C.1. If G is a n-dimensional smooth Lie group and f : G — R is a smooth
function on G, the directional derivative at g € G in the direction ] = 6gg~* € T.G
is defined to be

_d _
Df(g)-m= ./ (exp(t-7)g)
t=0
Moreover, if €1, €, -+, €, is a basis for the Lie algebra T.G, then Df(g) can be
explicitly written as

Df(g) = % [/ (exp(t-E1)g) f(exp(t-E)g) - flexp(t-en)g)]"| -
t=0

In regard to Lie group theory, R™ is also a smooth Lie group for which the binary op-
eration is addition, the Lie algebra is itself and the exponential map is the identity map.
Furthermore, the definition of directional derivatives on Lie groups in Definition C.1
is consistent with the definition of directional derivatives in R™. Therefore, it is with-
out loss of any generality to interpret all the quantities in this paper as elements of Lie
groups and all the derivatives in this paper as derivatives on Lie groups that are defined
by Definition C.1.

In this paper, following the notation in multivariate calculus, if f : G1 X Gg X - -+ X
G4 — R is a smooth function in which G1, Gs, - - -, G4 are Lie groups, we use D; f to
denote the derivative with respect to G;. In particular, for Ff’a = Ff g T b

I}

that is used for the computation of the Newton direction in Algorithm B.2, note that

=k, . L. . =k, . L. .
Dy F, “ is the derivative with respect to gf " and Do F, “ is the derivative with respect

—k,a
to v;

D Proof of Propositions

In this section, we review and prove Propositions 1 to 4 in [1] though these proofs
are not necessary for implementation.
D.1 Proof of Proposition 1

In Section 3.1, we define the discrete articulated body momentum and discrete ar-
ticulated body impulse are respectively as follows.

Definition 1. The discrete articulated body momentum ﬁf’a € RS for articulated body
1 is defined to be

e =T+ Y m va=0,1,- s (D.1)
j€chd(z)

. ., =7k, _ . P . . . .
in which M “ and vf’a are respectively the spatial inertia matrix and spatial velocity
of rigid body 1.

10



Definition 2. Suppose F;(t) € RS is the sum of all the wrenches directly acting on
rigid body 1, which does not include those applied or transmitted through the joints that

are connected to rigid body i. The discrete articulated body impulse Tf’a € RS for
articulated body 1 is defined to be

I =F"+ Y " (D.2)
j€chd(z)
in which Ff’a = WF,;(t"*) At € RS is the discrete impulse acting on rigid body i.

Note that F(t), e

. and ff’a are expressed in frame {0}.

The DEL equations Eq. (5) can be recursively evaluated with ﬁf’a and Ff “ as

Proposition 1 indicates.

Proposition 1. If Q;(t) € R is the sum of all joint forces applied to joint i and p* =

[p’f ph - pﬁ]T € R" is the discrete momentum, the DEL equations Eq. (5) can be
evaluated as

S
k,0 k0T —k,0 k8T g, k.0
T; :pf—i-Si 02, + E aoﬁSi -uiﬁ—l—Qi , (D.3a)
B=0
fk,aT k,a

S
. — - —k, T
e =S 4 Y e EP QR Ya =1, s~ 1, (D3b)
B=0

<ksT —k, - kBT k
AR A A D D R e X (D.3¢)
5=0

in which rf’a is the residue of the DEL equations Eqs. (5a) and (5b), a®f = whpbe,

-k, — -k, : . . ..
Q27" = wAt - adg@,a P 4T, and QF Y = wrQy(th*) At is the discrete joint

3 7

force applied to joint i.

Proof. The Lagrangian of a mechanical system is defined to be
L(q,9) = K(g,9) = V(q) (D4)

in which K(q,q) is the kinetic energy and V(q) is the potential energy. It is by the
definition of F';(t) and Q;(¢) that

T T T no T n
/0 }"(t)~5th75/0 V(q)dt:/o ;Fi(t)'mdtJr/O ;Qi(t)ﬁqidt

in which i, = (6gig;1)v. Therefore, the Lagrange-d’ Alembert principle Eq. (1) is
equivalent to

T T n T n
56:5/ K(q,q)dt+/ Zfi(t).mdw/ > Qit) - qidt =0. (D.5)
0 (U—— 0 =1

11



As aresult of Egs. (3) and (D.5), we have

Z |: <8qL (qk7o‘7 q'kvo‘)7 6qf7(y> + <%(qk7aa q.]ﬁa)) 6qi€7a> +

k=0 a=0 i=1

N—-1 s

F(t)70) + Q). 040 ) | At = 0. (D.6)

Note that the kinetic energy K (¢"%, %) is

n

1 T—k,a
K, q5) = 5 Yo My e (D.7)

Jj=1

in which 77;"" € RY%6 is the spatial inertia matrix and 77 € RS is the spatial velocity.
Using Egs. (C.10b), (D.1) and (D.7), we obtain

n kaT
OK | 1o -k Z%j’ —ka_
SO e g M mha
aqz(q yd ) P an J ’U]
ST 7 AT S (D-8)
j€Edes(z)
e T

In a similar way, as a result of Egs. (C.14b), (C.11b), (C.12), (D.1) and (D.7), a tedious
but straightforward algebraic manipulation results in

8K a k.o k. —k.«x Tikha NeY
o4 (qk’ L g )= Z {adgf,a(vf’ ka )fadsi‘av;C M; vf'
! jedes(i)U{i}
:Slk,aTadT ﬁfa
~ kol
=5 ke
(D.9)
In addition, using Egs. (C.4) and (D.2) and Ff " = wF(t:) At, we obtain
n . n . ko
D WO F () AL YY) =Y (W F () AL ST 6 + Y 5y
i=1 i=1 j€anc(z)
S GRS Wk A AR
i=1 j€Edes(7)
=N T8 6gb)
i=1
:i<§ at —=k,«a s ka>
i=1

(D.10)

12



From Eq. (2), we obtain

1 S
5 = —— N peB L 5gP, D.11
di At; i (D.11)

Substituting Egs. (D.8) to (D.10) into Eq. (D.6) and simplifying the resulting equation
with Eq. (D.11) as well as the chain rule, we obtain

N—-1 s n el i s k5T . . .

ok, _k,x s — q C,

E E E (S;7 -7+ E a®S;"7 it + QP 6 =0
k=0 a=0i=1 B=0

N —k, "y

in which o = wfbPe, 2] = wO‘At-adgf,M,uf’a—i—Fi “and Q¥ = W, (th) At.

The equation above is equivalent to requiring

—k,0T —k,0 2 k8T i k.0
PE+STT 2+ a%ST w0 =0,

B=0

kol —ka apc* BT _kp ko

Si QZ —|—Za Si 'z +Q2 =0 VOZ:L"',S—L

B=0
o1 ohesT ks ° spghBT _kp ks
P =5 8 Jrza Si w7
B=0

This completes the proof. [

D.2 Proof of Proposition 2

. . . . —k, .
In Section 3.2, we make the assumption on the discrete impulse F'; “ and discrete
P k,a
joint force Q" as follows.

Assumption 1. Let u(t) be control inputs of the mechanical system, we assume that

. . -k, . .. .
the discrete impulse F', “ and discrete Jjoint force Qf’a can be respectively formulated

?
=k, =k, ko —ka  k k,a k,a/ ka ko ok . . k
as F,”" =F;" (g%, v, u™%) and Q" = Q;"“(¢;"%, ¢;”, u"*) in which u®* =

1V

From the notion of the spatial variation in Section C.2, we have the following propo-
sition for the Newton direction computation, which is later used in the proof of Propo-
sition 2.

k,a

Proposition D.1. If 5q,f»C '* is the Newton direction for qf 1% is the residue of the

DEL equations Egs. (7a) and (7b), and Assumption 1 holds, the computation of the
Newton direction 6q;"” is equivalent to requiring

b =3 OFE Y (O - adBl 5" 6gE)

J
jéechd(4)
YVa=0,1,---,s, (D.12a)
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5T = (D + adgea —adgra) 7 + D, F . 5ot
> (5Fj - dDMSJ $67%) Ya=0,1,---,s—1, (D.I2b)
j€Echd(i)
50" =w At (ad%. -5 + adB. 508 ") + 5T
Va=0,1,---,s—1, (D.12¢c)
N S N afgk BTk, B o ki
ST aPST St + DiQE - 6q
B=0
k,a ko k,« _
D2Q;" - 6¢;"" = —r; YVa=0,1,---,s—1. (D.12d)

. . < <5k, <=k . .. — —=k,a
in which 60, 5, 3T, " and 52, are the spatial variations of T2*, it>®, T

and ﬁf’a, respectively. Note that 6qf’0 = 0 and ﬁf’o = 0 though gﬂf’o # 0.

Proof. Egs. (D.12a) and (D.12c) are respectively the same as Egs. (C.22) and (C.24),

thus we only need to prove Egs. (D.12b) and D. 12d)

o k, . k
(g5 R 5 k) and since Sup® =0,

» Y

i

From Assumption 1, we have Ff ’ F
we obtain 5Ff’a as
OF, " =Dy F, - + Do Fy - oue.
According to Eq. (C.16), the spatial variation 3?- s
SF =Dy F 7 4 Do FY - 5T ad%,jf”
Since 6, = §u5"* +ad; " o) ¢, ad, 5 WY = —adﬁf,aﬁf’a as well as ad%‘aff’a =

ad%_mﬁf **, the equation above is equlvalent to

TF; " = (DiF; " +ad.. — DoF; “adyre) 70 + Do F, ™ 0}
Substitute the equation above into Eq. (C.23), the result of which is Eq. (D.12b).
As for the proof of Eq. (D.12d), from Egs. (7a) and (7b), the Newton direction 5qf»€ @
requires that

5(sH"1,) +Zaaﬂ5 (L T W) W LR P
B=0
DoQ . 5GP = =B Yo =0,1,---,5s—1. (D.13)

—k,ozTik a —k,aT
As a result of Egs. (C.17) and (C.18), we have §(S; " 1;") = S;

—k,aT—k,a —k,an—k,oz . . ' .
6(S;" 2;7) =8, 88, with which and Eq. (D.13), we obtain Eq. (D.12d).

3 3 3

This completes the proof. O

SE® and
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In Section 3.2, Proposition 2 to compute the Newton direction is stated as follows,
for which note that the higher-order variational integrator has s + 1 control points and
the mechanical system has n degrees of freedom.

Proposition 2. For higher-order varlatlonal integrators of unconstrained mechani-
cal systems, if Assumption 1 holds and J*~ ( *) exists, the Newton direction 5G*
-Jk 1( ) - 7% can be computed with Algorithm B.1 in O(s>n) time.

Proof. The proof consists of proving the correctness and the O(n) complexity of the
algorithms.
For eachj € chd(4), we suppose that there exists Df’ap, Gf’a”, lf’a and Hf’ap,

WY ¢ such that
7k: « k,ap T 7p k,av 719,1/ k,a
Z Dy - ov " + Z Gy my

Ya=0,1,---,s (D.14)

S WACOL RS ST AR
Va=0,1,---,s—1. (D.15)

According to Egs. (C.3), (C.19) and (D.11), Sﬁ?’p and ﬁ?’" can be respectively com-
puted as

v gk v
7Y =T+ 8 oq) (D.16)
and

ok = Sole 4 Sk s 1 —S’c » Z b - 5 (D.17)

for which note that 5q;-“’0 = 0. Substitute Egs. (D.16) and (D.17) into Eq. (D.14), alge-
braic manipulation shows that

S =Y " Dier . o) ’P+ZG’”‘” 7Y l’“’+ZH’“’”§qﬂ (D.18)

p=0 v=1 ~y=1

in which
k,oy k,a'yék,'y k,a'y*kv’Y 1 ¢ k,ozp*kaﬂ
HP®Y = DPevshy 4 Ghevsy” + Zthij S;°.
In a similar way, using Egs. (D.15) to (D.17), we also have

ZH’”P 5*’“P+Zu7’”‘”f’” + B Y e 5 (D.19)
=1
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in which
S
kay _ grk,aygk,y k,ay gk 1 oy 7k, apghkoP
e | +E2b myers;”.
p=0

From Egs. (C.12), (C.24) and (D.17) to (D.19) and

—k,aT T —kao —k,ozT D Gk
Sj adgfaﬂj - SJ adﬁ?,a Sj — 0,
we obtain
vl L s s
N e UL k,ap $—k,p —k,av —k,v k,«
A T R L =LY L (D.20)
p=0 v=1
in which
- T T T
kap _  « ) k.o k,ap ap gk D k.o k,ap
0; " =w* At (Sj D% + 0% adﬁ;m) +5;7 1,

- T T
—k gkat Ak k.ot ok
shov _ e ap. 5RO gher | gheT gl
J J J J J ’
s
—k,aT

e — AL S

J J J

kol - T
e el s [ ar (5 b
y=1

—k,«

—k,aT D —k,aT k k
ay ol ) oy Y
oS adﬁf,aS» ) +5;7 @5 }éqj ,

J J

and note that o®” is given in Eq. (B.2) of Algorithm B.2. Substituting Egs. (D.11),
(D.18) and (D.20) into Eq. (D.12d), we obtain

s s s
—k,ap <-k,p =kav gy <k« k,ay k,y k,a
E 0, " - ov;" + E =M +E + E AP 6qT =
p=0 v=1 y=1

Va=0,1,---,s—1. (D21)
in which
k k . kBT k.
9k _ gh.ar apgh: Bp
6;"" =0y + 3 " aS; " Dy,
B=0
k k 5 kBT ks
=Ha _ okav aB gl Br
T =Ep )y et Gy,
5=0
S
ko kol ko wkal ko aﬂ—k,ﬁT k.8

B=0

s
k,ay _ kol kay | kol gkay 5*’“5T k,By
AT =wr AL ST HP 45 00T + E a®’ S HpU+
B=0
v (D Qk,&_,_ aAt~§k7aT dD ?k&a n 1 ) Qk,a
g 1 w j aﬁ?,n g 7At 2l -
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For notational convenience, we define A j “ to be

o _ N~pkar ke | N~Ehar by | gha
APt =3 0" du Y BT WY A
p=0 v=1
Va=0,1,---,s—1. (D22)

such that Eq. (D.21) is rewritten as

S AP ag)T = =t = AP Ya=0,1, 0, s 1. (D.23)
y=1

In addition, if we further define A;?, rf, A? and 6@9‘5 respectively as

A =[] e roxe,

J

T
k __ k,0 k,1 k,s—1 s
T = {rj T T } € R?,

k
Aj

T
[A?’O A?,l L A?,s—li| c RS,

T
o7k = [dq)" 6q)? - oq)] e R

inwhich0 < a <s—1and 1 < vy < s, then Eq. (D.23) is equivalent to requiring

k sk k k
Aj ~6qj =-rj— Aj. (D.24)
in which Af is invertible since 7% " (g") exists. From Eq. (D.24), we obtain
_ —1
6q§ = —Af (rf + Af)

If Af_l is explicitly written as /1;?_1 = {Z?’w} € R***in which 1 < v < s and

0 < p < s — 1, expanding the equation above, we obtain
s—1 X
6gbT = =S A (Tf"’ n Ajﬁ‘-’) Vy=1,2, -, s (D.25)
0=0
Substitute Eq. (D.22) into Eq. (D.25), the result is
5q;?,’Y — Z X]]?a’YP 3 g@fvp + Z Y’jka’YV . ﬁf,l’ + y;?”\/ (D26)
p=0 v=1
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in which

xhe — sz e k gp
J

k'yl/ o z : 7’YQ ,QV
. fk,w ko , £k.0
0=0

Making use of Egs. (D.18) and (D.26) and canceling out 5q§’7, we obtain

<~ k,a D Gk k.o . —=k.r <k, - kv gy ko
0f;"" — adgk.a 557 - 0g; =Y D" o+ Y G+ (D.27)
p=0 v=1

in whichaa =0, 1, --- | s,and
EJ =D+ Z HP oYX e U“Oa¢k GS xper, (D.28a)
y=1
G =aher Z e W e (D.28b)
~y=1
l k,a lk @ + Z Hk ay k,‘Y —aOa¢k aSk ay;v a7 (D.28¢)
y=1

and note that *° is given in Eq. (B.2) of Algorithm B.2. In a similar way, using
Egs. (D.19) and (D.26), we obtain

J

==k, D Gk k a k,ap 7k P k,av 7k v =k«
65" —adia5;" - Z)H .50 +Zzp T+ (D29)
p=

inwhicha=1, 2, ---, s,and
k S
—k,a B
Hj 4 = H;C,ap + Z @?,OL’YX;%’YP _ O,aoad%? aS Xk ap (DSOa)
~y=1
S
—=k,av  _koav E,avy kv —a0. 1D @Ry k,av
L A DB adpea ;" Y, (D.30b)
y=1
S
G = G Y B 7 ad e 5 (D.300)
y=1 J

Finally, for each j € chd(i), substituting Egs. (D.27) and (D.29) respectively into

Egs. (D.12a) and (D.12b) and applying Egs. (D.28) and (D.30) to expand D e Gk Y
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<k, —k,ap —k,av —<k,a . . k,p kv k,« k,ap k,av
lj andﬂj ,Wj ,Qj , we respectively obtain D;"", G, [.,”" and 11", %",

(ik’a as Egs. (B.1) and (B.3) of Algorithm B.2 such that

S S
Syt = DTt 4 G g 1
p=0 v=1

Ya=0,1,---,s, (D31

BT = 3 IIE™ - Gup 4 3wl 4+ ¢
Ya=0,1,---,s—1. (D.32)

In particular, note that even if rigid body ¢ is the leaf node of the tree representation
whose chd(i) = @, there still exists D", G¥, 19 and II}*7, WP, ¢F* from
Egs. (B.1) and (B.3) of Algorithm B.2. Moreover, as long as Df”’, Gf"’, lfa and
k,ap Yk',au

s Lq >

Hik’o‘p, Wik’o”’, Cik’a are given for each rigid body 7, we can further obtain X

yf "* following lines 3 to 9 of Algorithm B.2.
In summary, for each rigid body 4, we have shown that X Zk ap ykov, yf " as well

as DF?, GF 15 and 11527, wF*" | (P are computable through the backward pass
by Algorithm B.2, and 6¢/* as well as 777 and dv/"* are computable through the
forward pass by lines 4 to 15 of Algorithm B.1, which proves the correctness of the
algorithms.

In regard to the complexity, Algorithm B.2 has O(s?) + O(s%) complexity since

there are O(s?) quantities and the computation of Af’a_l takes O(s3) time, and thus
the backward pass by lines 1 to 3 of Algorithm B.1 totally takes O(s®>n + s%n) time.
Moreover, in lines 4 to 15 of Algorithm B.1, the forward pass takes O(szn) time. As a
result, the overall complexity of Algorithm B.1 is O(s3n), which proves the complexity
of the algorithms. O

D.3 Proof of Proposition 3
Proposition 3. For the kinetic energy K(q,q) of a mechanical system, %2;2( , g; éfl ,

2 2
gqég, %q{f can be recursively computed with Algorithm 2 in O(n?) time.

Proof. According to Egs. (D.1), (D.8) and (D.9), we have

0K 1 /— —
— =5 (Mvi + M vy (D.33)
0 ( i/e%;(i) )
and -
dg; =57 (M +i,€§(i) M) (D.34)
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Since M;;, S; and S; only depend on qj and ¢; for j € anc(i) U {i}, it is straightfor-
ward to show from Egs. (D.33) and (D.34) that the derivatives 83_2K K K

and

K
0q:0q;

0q4;° 04:0q;° 0qi0q;

can be respectively computed as

o [#(35) seme@u,
= ’K . . D.
aqlaq] 94;0q: ] € des(z), ( 35)
0 otherwise,
82K % (géf) *7 € anc(i) U {Z}7
= 02K . e .
94:0; Ba;00 j € des(i), (D.36)
0 otherwise,
o [#(35) seme@u,
= ?K . - .
0¢;0¢; 24;0q; j € des(i), (D.37)
0 otherwise,
b [ (85) geanciuin
oK = 9’°K . . (D.38)
9qi0q; ) a0 J € des(i), :
0 otherwise.

Therefore, we only need to consider the derivatives for j € anc(¢) U {i}, whereas the
derivatives for j ¢ anc(i) U {i} are computed from Egs. (D.35) to (D.38). In addition,
if j € anc(i) U {i}, using Egs. (C.14a), (C.10a), (C.11) and (C.12), we obtain

OMv; — —
5i = MiS;, (D.39)
i
5‘qu = —ad%j M;v; — Ml‘adgjiz‘ + Miadgj (ﬁi — 5j)
i
_ Mi;j B ad%j M5 (D.40)
95 =
5. - adgj S, (D41
J
S - _
aq . = a,dgi adgj S»L + a’dadgA (vi—vy) Sl . (D42)
g J
For notational clarity, we define 7,, M, M:‘ and MiB as
w; = Mz'@i + Z Mj@j = Mqﬁz + Z ﬁj, (D.43)
j€Edes(z) j€chd(4)
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Mi=M;+ > M;=M;+ > M, (D.44)

j€Edes(i) j€chd(z)
M = M5, (D.45)

: : : ats ’K  _9°K _9’°K K
which will be used in the derivation of 94:04,° 94,00,° 94,04, and 9404, "

*K
D 94;9q;

If j € anc(i) U {i}, from Egs. (D.33), (D.39), (D.44) and (D.45), it is simple to
show that

— N\ (D.47)

K
2) 094¢;0q;

If j € anc(4) U {i}, using Egs. (C.7a), (D.33), (D.40), (D.44) and (D.45), we obtain

PE 0 (8[()
0q;0q;  dq; \ 0q;

= Z (S;[le Sj — ??ad%}ﬂi/@/ + @Tadgﬂymz)
i/ e€des(i)U{i}

-5 (M Y WS (D.48)
i’ €des(1)
N

=5, M;S;
5T

J (2

’K
3) 94¢:0q;
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If j € anc(4) U {3}, using Egs. (D.34), (D.39), (D.41), (D.43) and (D.44), we obtain

PE 0 (8K)
9qi04; 04 \ g
- ¥ (??Hi@ﬁr??ad%jﬂi@/)
i’€des(i)U{i}
= §f (Mz + Z M1/>§Z + (Mz@z =+ Z Mi/@y)Tadgjgi

i’ €des(1) i’ €des(1)

ST 5 _T —

Then simplify the equation above with ﬁiTadgj S = —ngadgi S; and Eq. (D.46), the
result is
2K

57 (W46, - adl'3,) = 5T
9000 = 5 (MiSi — adP5:) =5, M (D.49)

9°K
4 0q;0q;

If j € anc(i) U {i}, using Egs. (C.12), (D.34), (D.39), (D.40) and (D.42) to (D.44)
and ad, g, = ady,adg, —adg ady,, we obtain

PKE 9 <6K>
0¢;0q;  Og; \ Og;
. { (W.50)" (ads,ad, 5 — adg ady, 5t

i/ €des(i)U{s}

Sj
- __ _ T _
= JT(Ml + Z MZ/)Sl + (Mﬂh + Z Mﬂ)y) aud;jSz
i/ €des(z) i/ €des(z) ’
= ??ﬂzgi + ulTadj S
Similar to %, using ﬁiTadgj S; = —?fadgi S; and Eq. (D.46), we obtain
PK a1 - — ~T—B
:s.( S — dPSZ-):S- b D.50
dgiog, 01 \(Mii—adg, i Mi (B30
Thus far, we have proved that 8?;;; s 8‘232 - 823; and a‘?;g] - can be compuzted
using Egs. (D.35) to (D.38) and (D.47) to (D.50) with which we further have 9K

8q2 )
K 9’°K ’K
5300 Dq0q and 52 computed.

As for the complexity of Algorithm 2, it takes O(n) time to pass the tree repre-

sentation forward to compute g;, M;, Si, T;, S; and another O(n) time to pass the
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. -— ——A -—B
tree representation backward to compute fz;, M;, M; and M, . In the backward pass,

a?;é;, 82,2(;;} a?;a{; and 8‘?;;; are computed for each ¢ using Egs. (D.35) to (D.38)
and (D.47) to (D.50) which totally takes at most O(n2) time. Therefore, the complexity

of Algorithm 2 is O(n?). This completes the proof. O

D.4 Proof of Proposition 4

Proposition 4. If g € R3 is gravity, then for the gravitational potential energy Vg(q),

2
% can be recursively computed with Algorithm 3 in O(n?) time.

Proof. It is known that the gravitational potential energy Vg (g) is
Velg) == mi-g"pi. (D.51)
i=1

in which m; € R is the mass of rigid body i and p; € R? is the mass center of rigid
body 4 as well as the origin of frame {i}. In addition, from Egs. (C.5a) and (C.5b), we
have

Opi _ Sipi+m; jE an‘?(i) u{i}, (D.52a)
3% 0 otherwise,

and N
Op; _ [Spj+7s € des(i) Ui}, (D.52b)
dq; 0 otherwise,

in which 3;,7; € R3and S; = [E,T ﬁzT] T € R is the spatial Jacobian of joint 7. From
Egs. (D.52b) and (D.51), algebraic manipulation gives

%l% _— (mi [pig} + > m [pi’g} ) (D.53)
di g i’ €des(i) g

Moreover, observe that S; and p; only depends on g; for j € anc(i) U {i}, we obtain
from Eq. (D.53) that

A% . . .
v 2 (5x) Jeanc(i) Ui},
g _ 9%V, . .
aqqaqj - Wag(h J c des(z), (D54)
0

otherwise,

which means that only 822‘}'9/3' for j € anc(i) U {i} needs to be explicitly computed. If

J € anc(i)U{i}, using Egs. (C.7a), (D.52a) and (D.53) as well as the equality ab = —ba
for any a, b € R3, we obtain

PV D (avg>
0q;0q;  0q; \ 0q;

= > me [ (&5pe +5pve) — AT 85
i/ €des(i)U{i}
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In addition, since pyg5; = —5,;pir — s5;prg and @’ = —a for any a € R, the
equation above is equivalent to

2V, . B
3,3g4282g[(mi+ Z my )i, — (map; + Z mapir Z} (D.55)
4i94; i/ €des(7) i/ €des(7)
If we define
=it X mmmit Y
j€Edes(7) j€chd(z)
Tp=mipit D, mgpy=mipit > T,
j€Edes(z) j€chd(7)

G =8 (Tm, -7 — Op, - 5i)
then Eq. (D.55) is further simplified to

Vg ~ T_A
g T, i — 0p,;8i) =5;0; - (D.56)
aQia% ( P )

Asa result, 7 2 can be computed from Egs. (D.54) and (D.56).

The O(n 2) complexity of Algorithm 3 is as follows: the forward pass to compute
gi and S; and the backward pass to compute &,,,, 0, and &4 take O(n) time, respec-

. . %V, 2%V, T— .
tively; and the computation of Wd;j = 2 Bg = s]TU;4 totally takes O(n?) time.
Therefore, it can be concluded that Algorithm 3 has O(n?) complexity. This completes
the proof. U
References

1. Taosha Fan, Jarvis Schultz, and Todd D Murphey. Efficient computation of variational inte-
grators in robotic simulation and trajectory optimization. In International Workshop on the
Algorithmic Foundations of Robotics (WAFR), 2018.

24



