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Abstract. This appendix provides the complete O(n) algorithms to compute the
Newton direction for higher-order variational integrators and the proofs of the
propositions in the paper “Efficient Computation of Higher-Order Variational In-
tegrators in Robotic Simulation and Trajectory Optimization” [1], accepted to
the 13th International Workshop on the Algorithmic Foundations of Robotics
(WAFR’18). It is assumed that the reader has read the original paper and knows
the problem statements and the notation used. The numbering of the equations,
algorithms, propositions, etc., is consistent with the numbering used in the origi-
nal paper.

A Introduction

In the paper “Efficient Computation of Higher-Order Variational Integrators in Rob-
otic Simulation and Trajectory Optimization” [1], we present O(n) algorithms to eval-
uate the discrete Euler-Lagrange (DEL) equations and compute the Newton direction
for solving the DEL equations, and O(n2) algorithms to linearize the DEL equations.
As an appendix to [1], this document provides the complete O(n) algorithms to com-
pute the Newton direction for higher-order variational integrators and the proofs of the
propositions in [1], which are not covered in the original paper due to space limitations.

In this appendix, we begin with the completeO(n) algorithms to compute the New-
ton direction in Section B. In Section C, we give an overview of preliminaries used in
the algorithms and proofs. Propositions 1 to 4 in [1, Sections 3 and 4] to compute the
higher-order variational integrators are proved in Section D.

For implementation only, the reader only needs to read Algorithms B.1 and B.2 in
Section B as well as Algorithms 1 to 3 in [1, Sections 3 and 4]. Sections C and D are
not required to read as they present the proofs of the propositions in [1] that do not
necessarily aid in implementation.

Even though most of the important content in [1] is reiterated, we still advise the
reader to read the original paper to know the problem statements and the notation used.
Moreover, as mentioned in the abstract, the numbering of the equations, algorithms,
propositions, etc., is consistent with the numbering used in [1]. Therefore, the original
paper will not be explicitly cited in the rest of this appendix when we make references
to anything in it.



B The O(n) Algorithms to Compute the Newton Direction

In this section, we present Algorithms B.1 and B.2 to compute the Newton direc-
tion for higher-order variational integrators. The algorithms are self-contained and we
refer the reader to Section C.3 for differentiation on Lie groups that is used to compute
D1F

k,α

i in Eq. (B.3b) of Algorithm B.2. The correctness and the O(n) complexity of
Algorithms B.1 and B.2 are proved in Section D.2, however, this is not required to read
for implementation. We remind the reader that δqk,γi is the Newton direction for qk,γi ,
and rk,%i is the residue of the DEL equations Eqs. (7a) and (7b). Moreover, from Proposi-
tion 2, Algorithms B.1 and B.2 assume that the inverse of the Jacobian J−1(qk) exists,
and F

k,α

i and Qk,αi can be respectively formulated as F
k,α

i = F
k,α

i (gk,αi , vk,αi , uk,α)

and Qk,αi = Qk,αi (qk,αi , q̇k,αi , uk,α).
There are a number of quantities, such as Dk,αρ

i , Φk,αγi , ζk,αi , Hk,γ
i , etc., which are

recursively introduced in Algorithm B.2 to compute the Newton direction. Since there
is no influence on the implementation of the algorithms as long as these quantities are
correctly computed, we leave the explanation of their meaning to Section D.2. Similarly,
the detailed explanation of ηk,νi and δvk,ρi in Algorithm B.1 is left to Sections C.1
and C.2, respectively. For purposes of implementation, the reader only needs to know
that these quantities are recursively computed through Algorithms B.1 and B.2.

Algorithm B.1 Recursive Computation of the Newton Direction

1: initialize gk,α0 = I and vk,α0 = 0
2: for i = 1→ n do
3: for α = 0→ s do
4: gk,αi = gk,αpar(i)g

k,α
par(i),i(q

k,α
i )

5: S
k,α

i = Adgk,αi
Si, M

k,α

i = Ad−T
gk,αi

MiAd−1
gk,αi

6: q̇k,αi = 1
∆t

s∑
β=0

bαβqk,βi , vk,αi = vk,αpar(i) + S
k,α

i · q̇k,αi

7: Ṡ
k,α

i = advk,αi
S
k,α

i

8: end for
9: end for

10: for i = n→ 1 do
11: use Algorithm B.2 to evaluate

a) Dk,αρ
i , Gk,ανi , lk,αi and µk,αi

b) Πk,αρ
i , Ψk,ανi , ζk,αi and Γ

k,α

i

c) Hk,α
i and Φk,αi

d) Xk,αρ
i , Y k,ανi and yk,αi

12: end for
13: initialize ηk,ν0 = 0 and δvk,ρ0 = 0

14: for i = 1→ n do
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15: for γ = 1→ s do

16: δqk,γi =
s∑
ρ=0

Xk,γρ
i · δvk,ρpar(i) +

s∑
ν=1

Y k,γνi · ηk,νpar(i) + yk,γi

17: end for
18: for ν = 1→ s do
19: ηk,νi = ηk,νpar(i) + S

k,ν

i · δqk,νi
20: end for
21: for ρ = 0→ s do

22: δq̇k,ρi = 1
∆t

s∑
γ=1

bργ · δqk,γi

23: δvk,ρi = δvk,ρpar(i) + Ṡ
k,ρ

i · δq
k,ρ
i + S

k,ρ

i · δq̇
k,ρ
i

24: end for
25: end for

Algorithm B.2 Recursive Computation of the Newton Direction – Backward Pass

1: ∀α = 0, 1, · · · , s, ∀ρ = 0, 1, · · · , s and ∀ν = 0, 1, · · · , s− 1,

Dk,αρ
i = σαρM

k,α

i +
∑

j∈chd(i)

(
Dk,αρ
j +

s∑
γ=1

Hk,αγ
j Xk,γρ

j −

σα0adD
µk,αj

S
k,α

j Xk,αρ
j

)
, (B.1a)

Gk,ανi =
∑

j∈chd(i)

(
Gk,ανj +

s∑
γ=1

Hk,αγ
j Y k,γνj − σα0adD

µk,αj
S
k,α

j Y k,ανj

)
, (B.1b)

lk,αi =
∑

j∈chd(i)

(
lk,αj +

s∑
γ=1

Hk,αγ
j yk,γj − σα0adD

µk,αj
S
k,α

j yk,αj

)
, (B.1c)

µk,αi = M
k,α

i vk,αi +
∑

j∈chd(i)

µk,αj

in which

σαρ =

{
1 α = ρ,

0 α 6= ρ
and σα0 =

{
1 α 6= 0,

0 α = 0
(B.2)

2: ∀α = 0, 1, · · · , s− 1, ∀ρ = 0, 1, · · · , s and ∀ν = 0, 1, · · · , s− 1,

Πk,αρ
i = σαρD2F

k,α

i +
∑

j∈chd(i)

(
Πk,αρ
j +

s∑
γ=1

Φk,αγj Xk,γρ
j −

σα0adD
Γ
k,α
j

S
k,α

j Xk,αρ
j

)
, (B.3a)
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Ψk,ανi = σαν
(
D1F

k,α

i + adD
F
k,α
i

− D2F
k,α

i advk,αi

)
+∑

j∈chd(i)

(
Ψk,ανj +

s∑
γ=1

Φk,αγj Y k,γνj − σα0adD
Γ
k,α
j

S
k,α

j Y k,ανj

)
, (B.3b)

ζk,αi =
∑

j∈chd(i)

(
ζk,αj +

s∑
γ=1

Φk,αγj yk,γj − σα0adD
Γ
k,α
j

S
k,α

j yk,αj

)
, (B.3c)

Γ
k,α

i = F
k,α

i +
∑

j∈chd(i)

Γ
k,α

j

3: ∀α = 0, 1, · · · , s and ∀γ = 1, 2, · · · , s,

Hk,αγ
i = Dk,αγ

i Ṡ
k,γ

i +Gk,αγi S
k,γ

i +
1

∆t

s∑
ρ=0

bργDk,αρ
i S

k,ρ

i .

4: ∀α = 0, 1, · · · , s− 1 and ∀γ = 1, 2, · · · , s,

Φk,αγi = Πk,αγ
i Ṡ

k,γ

i + Ψk,αγi S
k,γ

i +
1

∆t

s∑
ρ=0

bργΠk,αρ
i S

k,ρ

i .

5: ∀α = 0, 1, · · · , s− 1, ∀ρ = 0, 1, · · · , s and ∀ν = 0, 1, · · · , s− 1,

Θk,αρi = wα∆t ·
(
Ṡ
k,α

i

T

Dk,αρ
i + σαρS

k,α

i

T

adD
µk,αi

)
+ S

k,α

i

T

Πk,αρ
i ,

Ξk,ανi = wα∆t · Ṡk,αi
T

Gk,ανi + S
k,α

i

T

Ψk,ανi .

6: ∀α = 0, 1, · · · , s− 1, ∀ρ = 0, 1, · · · , s and ∀ν = 0, 1, · · · , s− 1,

Θ
k,αρ

i = Θk,αρi +

s∑
β=0

aαβS
k,β

i

T

Dk,βρ
i ,

Ξ
k,αν

i = Ξk,ανi +

s∑
β=0

aαβS
k,β

i

T

Gk,βνi ,

ξ
k,α

i = wα∆t · Ṡk,αi
T
lk,αi + S

k,α

i

T
ζk,αi +

s∑
β=0

aαβS
k,β

i

T
lk,βi .

7: ∀α = 0, 1, · · · , s− 1 and ∀γ = 1, 2, · · · , s,

Λk,αγi =wα∆t · Ṡk,αi
T
Hk,αγ
i + S

k,α

i

T
Φk,αγi +

s∑
β=0

aαβS
k,β

i

T
Hk,βγ
i +

σαγ
(
D1Q

k,α
i + wα∆t · Sk,αi

T
adD
µk,αi

Ṡ
k,α

i

)
+

1

∆t
bαγ · D2Q

k,α
i

with which Λki =
[
Λk,αγi

]
∈ Rs×s

4



8: ∀γ = 1, 2, · · · , s and ∀% = 0, 1, · · · , s − 1, compute Λ
k,γ%

i such that Λki
−1

=[
Λ
k,γ%

i

]
∈ Rs×s

9: ∀γ = 1, 2, · · · , s, ∀ρ = 0, 1, · · · , s and ∀ν = 1, 2, · · · , s

Xk,γρ
i = −

s−1∑
%=0

Λ
k,γ%

i ·Θk,%ρi ,

Y k,γνi = −
s−1∑
%=0

Λ
k,γ%

i ·Ξk,%νi ,

yk,γi = −
s−1∑
%=0

Λ
k,γ%

i

(
rk,%i + ξ

k,%

i

)

C Preliminaries

In this section, we present additional preliminaries used in Algorithms B.1 and B.2
and the proofs of Propositions 1 to 4. In Section C.1, we extend the contents of Sec-
tion 2.3 for the computation of variations and derivatives. In Sections C.2 and C.3, we
respectively introduce the notion of the spatial variation for spatial quantities and the
differentiation on Lie groups, which are mainly used in Algorithms B.1 and B.2 and the
proof of Proposition 2.

C.1 The Tree Representation Revisited

In addition to the computation of rigid body dynamics as those in Section 2.3, the
tree representation can also be used to compute the variations and derivatives.

As is known, in the tree representation, the configuration gi ∈ SE(3) of rigid body
i is

gi = gpar(i)gpar(i),i(qi) (C.1)

in which gpar(i),i(qi) = gpar(i),i(0) exp(Ŝiqi) and Si is the body Jacobian of joint i
with respect to frame {i}. In addition, the spatial Jacobian of joint i with respect to
frame {0} is

Si = AdgiSi (C.2)

in which Si is constant by definition. Using Eqs. (C.1) and (C.2) as well as AdgiSi =(
giŜig

−1
i

)∨
, we obtain ηi = (δgig

−1
i )∨ as

ηi = ηpar(i) + Si · δqi, (C.3)

or equivalently,

ηi = Si · δqi +

n∑
j∈anc(i)

Sj · δqj (C.4)
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and furthermore, (
∂gi
∂qj

g−1i

)∨
=

{
Sj j ∈ anc(i) ∪ {i},
0 otherwise,

(C.5a)

(
∂gj
∂qi

g−1i

)∨
=

{
Si j ∈ des(i) ∪ {i},
0 otherwise.

(C.5b)

In addition, from Eqs. (C.2) and (C.3), δAdgi = adηiAdgi and adSiSi = 0, we obtain

δSi = adηiSi = −adSiηi = adηpar(i)Si = −adSiηpar(i). (C.6)

Moreover, as a result of Eqs. (C.4) to (C.6), we further obtain

∂Si
∂qj

=

{
adSjSi j ∈ anc(i),

0 otherwise,
(C.7a)

∂Sj
∂qi

=

{
adSiSj j ∈ des(i),

0 otherwise.
(C.7b)

Since the spatial velocity vi of rigid body i is

vi = Si · q̇i +
∑

j∈anc(i)

Sj · q̇j

= vpar(i) + Si · q̇i,
(C.8)

we obtain
δvi = δSi · q̇i + Si · δq̇i +

∑
j∈anc(i)

(
δSj · q̇j + Sj · δq̇j

)
= δvpar(i) + δSi · q̇i + Si · δq̇i.

Substitute Eq. (C.6) into the equation above, the result is

δvi = adηiSi · q̇i + Si · δq̇i +
∑

j∈anc(i)

(
adηjSj · q̇j + Sj · δq̇j

)
= δvpar(i) + adηiSi · q̇i + Si · δq̇i.

(C.9)

From Eqs. (C.6) to (C.9), we obtain

∂vi
∂q̇j

=

{
Sj j ∈ anc(i) ∪ {i},
0 otherwise,

(C.10a)

∂vj
∂q̇i

=

{
Si j ∈ des(i) ∪ {i},
0 otherwise,

(C.10b)

and
∂vi
∂qj

=

{
adSj (vi − vj) j ∈ anc(i) ∪ {i},
0 otherwise,

(C.11a)
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∂vj
∂qi

=

{
adSi(vj − vi) j ∈ des(i) ∪ {i},
0 otherwise.

(C.11b)

In addition, from Eqs. (C.2) and (C.8), Adġi = adviAdgi and adSiSi = 0, we obtain

Ṡi = adviSi = −adSivi = advpar(i)Si = −adSivpar(i). (C.12)

As for the spatial inertia matrix M i = Ad−Tgi MiAd−1gi , algebraic manipulation shows
that

δM i = −adTηi ·M i −M i · adηi , (C.13)

and from Eqs. (C.3) to (C.5) and Eq. (C.13), we obtain

∂M i

∂qj
=

{
−adT

Sj
M i −M iadSj j ∈ anc(i) ∪ {i},

0 otherwise,
(C.14a)

∂M j

∂qi
=

{
−adT

Si
M j −M jadSi j ∈ des(i) ∪ {i},

0 otherwise.
(C.14b)

In Sections D.1 to D.4, Eq. (C.3) to (C.14) will be used to prove Propositions 1 to 4.

C.2 The Spatial Variation

In this subsection, we introduce the spatial variation δ (·) that is used in Algo-
rithms B.1 and B.2 and the proof of Proposition 2. Note that the notion of the spatial
variation δ (·) only applies to the spatial quantities (·) of TeSE(3) or T ∗e SE(3) that are
described in the spatial frame.

If a, a ∈ TeSE(3) are related as a = Adga in which g ∈ SE(3), we have

δa = Adgδa+ adηa

in which η = (δgg−1)∨. For numerical simplicity, it is sometimes preferable to have
the variations of a and a still related by Adg . Therefore, we define the spatial variation
δa to be

δa = δa− adηa (C.15)

such that δa = Adgδa as long as a = Adga. In a similar way, if b
∗
, b∗ ∈ T ∗e SE(3) are

related as b
∗

= Ad−Tg b∗, we obtain

δb
∗

= Ad−Tg δb∗ − adTη b
∗
.

Similar to Eq. (C.15), the spatial variation δ b
∗

is defined to be

δ b
∗

= δb
∗

+ adTη b
∗

(C.16)
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such that δ b
∗

= Ad−Tg δb∗ as long as b
∗

= Ad−Tg b∗. In addition, note that δ
(
b∗Ta

)
=

δb∗Ta+ b∗T δa = δ b
∗T
a+ b

∗T
δa and δ(b

∗T
a) = δ(b∗Ta), we have

δ(b
∗T
a) = δ b

∗T
a+ b

∗T
δa. (C.17)

In general, the spatial variations δ (·) are the infinitesimal changes of spatial quanti-
ties in either the Lie algebra TeSE(3) or the dual Lie algebra T ∗e SE(3) after canceling
out the influences of the frame change.

In Section 3, we have a number of spatial quantities that are defined in TeSE(3)
and T ∗e SE(3), whose spatial variations δ (·) can be computed in the tree representation.

Following Eqs. (C.2), (C.6) and (C.15), for S
k,α

i = Adgk,αi
Si, the spatial variation

δS
k,α

i is

δS
k,α

i = 0 (C.18)

though δS
k,α

i = adηk,αi
S
k,α

i is usually not zero. In addition, according to Eqs. (C.9)
and (C.15), we have

δvk,αi = δvk,αpar(i) + adηk,αi
S
k,α

i · q̇k,αi + S
k,α

i · δq̇k,αi − adηk,αi
vk,αi

Substitute Eqs. (C.3) and (C.8) into the equation above to expand adηk,αi
vk,αi and apply

Eqs. (C.6) and (C.12), it can be shown that

δvk,αi = δvk,αpar(i) + Ṡ
k,α

i · δqk,αi + S
k,α

i · δq̇k,α. (C.19)

In terms of µk,αi , Γ
k,α

i andΩ
k,α

i in Eq. (7), which are spatial quantities in T ∗e SE(3),
we can still implement the tree representation to compute the spatial variation. Accord-
ing to Definition 1, we have

δµk,αi = δ(M
k,α

i vk,αi ) +
∑

j∈chd(i)

δµk,αj .

From Eq. (C.16), the spatial variation δµk,αi is

δµk,αi = δ(M
k,α

i vk,αi ) +
∑

j∈chd(i)

δµk,αj + adT
ηk,αi

µk,αi .

Using µk,αi = M
k,α

i vk,αi +
∑
j∈chd(i) µ

k,α
j and ηk,αi = ηk,αj − Sk,αj · δqk,αj , we have

δµk,αi = δ(M
k,α

i vk,αi ) + adT
ηk,αi

(M
k,α

i vk,αi )+∑
j∈chd(i)

(
δµk,αj + adT

ηk,αj
µk,αj − adT

S
k,α
j

µk,αj · δqk,αj
)

(C.20)
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As a result of Eqs. (C.13) and (C.15), δ(M
k,α

i vk,αi ) + adT
ηk,αi

(M
k,α

i vk,αi ) is

δ(M
k,α

i vk,αi ) + adT
ηk,αi

(M
k,α

i vk,αi ) = M
k,α

i (δvk,αi − adηk,αi
vk,αi )

= M
k,α

i δvk,αi .
(C.21)

From Eqs. (C.16) and (C.21) and adT
S
k,α
j

µk,αj = adD
µk,αj

S
k,α

j , Eq. (C.20) is simpli-

fied to

δµk,αi = M
k,α

i δvk,αi +
∑

j∈chd(i)

(
δµk,αj − adT

S
k,α
j

µk,αj · δqk,αj
)

= M
k,α

i δvk,αi +
∑

j∈chd(i)

(
δµk,αj − adD

µk,αj
S
k,α

j · δqk,αj
)
.

(C.22)

In a similar way, for the spatial variation δΓ
k,α

i , we obtain

δΓ
k,α

i = δF
k,α

i +
∑

j∈chd(i)

(
δΓ

k,α

j − adT
S
k,α
j

Γ
k,α

j · δqk,αj
)

= δF
k,α

i +
∑

j∈chd(i)

(
δΓ

k,α

j − adD
Γ
k,α
j

S
k,α

j · δqk,αj
)
.

(C.23)

As for Ω
k,α

i = wα∆t · adT
vk,αi
· µk,αi + Γ

k,α

i , from Eqs. (C.15) and (C.16), algebraic
manipulation shows that

δΩ
k,α

i = δΩ
k,α

i + adT
ηk,αi

Ω
k,α

i

= wα∆t ·
(
adT
vk,αi
· δµk,αi + adT

δvk,αi
µk,αi

)
+ δΓ

k,α

i

= wα∆t ·
(
adT
vk,αi
· δµk,αi + adD

µk,αi
δvk,αi

)
+ δΓ

k,α

i .

(C.24)

In Section D.2, Eqs. (C.18), (C.19) and (C.22) to (C.24) will be used to prove Propo-
sition 2.

C.3 Differentiation on Lie Groups

For an analytical function f : Rn → R, the directional derivative at x ∈ Rn in the
direction δx is defined to be

Df(x) · δx =
d

dt
f(x+ t · δx)

∣∣∣∣
t=0

in which Df(x) =
[
∂f
∂x1

∂f
∂x2
· · · ∂f

∂xn

]T
∈ Rn.

In a similar way, we might define the directional derivative on Lie groups using the
Lie algebra and the exponential map as follows.
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Definition C.1. IfG is a n-dimensional smooth Lie group and f : G −→ R is a smooth
function on G, the directional derivative at g ∈ G in the direction η = δgg−1 ∈ TeG
is defined to be

Df(g) · η =
d

dt
f (exp (t · η) g)

∣∣∣∣
t=0

.

Moreover, if e1, e2, · · · , en is a basis for the Lie algebra TeG, then Df(g) can be
explicitly written as

Df(g) =
d

dt

[
f (exp (t · e1) g) f (exp (t · e2) g) · · · f (exp (t · en) g)

]T ∣∣∣∣
t=0

.

In regard to Lie group theory, Rn is also a smooth Lie group for which the binary op-
eration is addition, the Lie algebra is itself and the exponential map is the identity map.
Furthermore, the definition of directional derivatives on Lie groups in Definition C.1
is consistent with the definition of directional derivatives in Rn. Therefore, it is with-
out loss of any generality to interpret all the quantities in this paper as elements of Lie
groups and all the derivatives in this paper as derivatives on Lie groups that are defined
by Definition C.1.

In this paper, following the notation in multivariate calculus, if f : G1×G2×· · ·×
Gd → R is a smooth function in which G1, G2, · · · , Gd are Lie groups, we use Dif to
denote the derivative with respect toGi. In particular, forF

k,α

i = F
k,α

i (gk,αi , vk,αi , uk,αi )
that is used for the computation of the Newton direction in Algorithm B.2, note that
D1F

k,α

i is the derivative with respect to gk,αi and D2F
k,α

i is the derivative with respect
to vk,αi .

D Proof of Propositions

In this section, we review and prove Propositions 1 to 4 in [1] though these proofs
are not necessary for implementation.

D.1 Proof of Proposition 1

In Section 3.1, we define the discrete articulated body momentum and discrete ar-
ticulated body impulse are respectively as follows.

Definition 1. The discrete articulated body momentum µk,αi ∈ R6 for articulated body
i is defined to be

µk,αi = M
k,α

i vk,αi +
∑

j∈chd(i)

µk,αj ∀α = 0, 1, · · · , s (D.1)

in which M
k,α

i and vk,αi are respectively the spatial inertia matrix and spatial velocity
of rigid body i.
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Definition 2. Suppose F i(t) ∈ R6 is the sum of all the wrenches directly acting on
rigid body i, which does not include those applied or transmitted through the joints that
are connected to rigid body i. The discrete articulated body impulse Γ

k,α

i ∈ R6 for
articulated body i is defined to be

Γ
k,α

i = F
k,α

i +
∑

j∈chd(i)

Γ
k,α

j (D.2)

in which F
k,α

i = ωαF i(t
k,α)∆t ∈ R6 is the discrete impulse acting on rigid body i.

Note that F i(t), F
k,α

i and Γ
k,α

i are expressed in frame {0}.

The DEL equations Eq. (5) can be recursively evaluated with µk,αi and F
k,α

i as
Proposition 1 indicates.

Proposition 1. If Qi(t) ∈ R is the sum of all joint forces applied to joint i and pk =[
pk1 p

k
2 · · · pkn

]T ∈ Rn is the discrete momentum, the DEL equations Eq. (5) can be
evaluated as

rk,0i = pki + S
k,0

i

T

·Ωk,0i +

s∑
β=0

a0βS
k,β

i

T

· µk,βi +Qk,0i , (D.3a)

rk,αi = S
k,α

i

T

·Ωk,αi +

s∑
β=0

aαβS
k,β

i

T

· µk,βi +Qk,αi ∀α = 1, · · · , s− 1, (D.3b)

pk+1
i = S

k,s

i

T

·Ωk,si +

s∑
β=0

asβS
k,β

i

T

· µk,βi +Qk,si (D.3c)

in which rk,αi is the residue of the DEL equations Eqs. (5a) and (5b), aαβ = wβbβα,

Ω
k,α

i = wα∆t · adT
vk,αi
· µk,αi + Γ

k,α

i , and Qk,αi = ωαQi(t
k,α)∆t is the discrete joint

force applied to joint i.

Proof. The Lagrangian of a mechanical system is defined to be

L(q, q̇) = K(q, q̇)− V (q) (D.4)

in which K(q, q̇) is the kinetic energy and V (q) is the potential energy. It is by the
definition of F i(t) and Qi(t) that∫ T

0

F(t) · δqdt− δ
∫ T

0

V (q)dt =

∫ T

0

n∑
i=1

F i(t) · ηidt+

∫ T

0

n∑
i=1

Qi(t) · δqidt

in which ηi = (δgig
−1
i )∨. Therefore, the Lagrange-d’Alembert principle Eq. (1) is

equivalent to

δS = δ

∫ T

0

K(q, q̇)dt+

∫ T

0

n∑
i=1

F i(t) · ηidt+

∫ T

0

n∑
i=1

Qi(t) · δqidt = 0. (D.5)
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As a result of Eqs. (3) and (D.5), we have

N−1∑
k=0

s∑
α=0

wα
n∑
i=1

[ 〈
∂K
∂qi

(qk,α, q̇k,α), δqk,αi

〉
+
〈
∂K
∂q̇i

(qk,α, q̇k,α), δq̇k,αi

〉
+

〈F i(tk,α), ηk,αi 〉+ 〈Qi(tk,α), δqk,αi 〉
]
∆t = 0. (D.6)

Note that the kinetic energy K(qk,α, q̇k,α) is

K(qk,α, q̇k,α) =
1

2

n∑
j=1

vk,αj
T
M

k,α

j vk,αj (D.7)

in whichM
k,α

i ∈ R6×6 is the spatial inertia matrix and vk,αi ∈ R6 is the spatial velocity.
Using Eqs. (C.10b), (D.1) and (D.7), we obtain

∂K

∂q̇i
(qk,α, q̇k,α) =

n∑
j=1

∂vk,αj
∂q̇i

T

M
k,α

j vk,αj

=S
k,α

i

T

M
k,α

i vk,αi +
∑

j∈des(i)

S
k,α

i

T

M
k,α

j vk,αj

=S
k,α

i

T

µk,αi .

(D.8)

In a similar way, as a result of Eqs. (C.14b), (C.11b), (C.12), (D.1) and (D.7), a tedious
but straightforward algebraic manipulation results in

∂K

∂qi
(qk,α, q̇k,α) =

∑
j∈des(i)∪{i}

[
ad
S
k,α
i

(vk,αj − vk,αi )− ad
S
k,α
i
vk,αj

]T
M

k,α

j vk,αj

=Sk,αi
T

adTvi · µ
k,α
i

=Ṡ
k,α

i

T

µk,αi .
(D.9)

In addition, using Eqs. (C.4) and (D.2) and F
k,α

i = wαF i(t
k,α)∆t, we obtain

n∑
i=1

〈wαF i(tk,α)∆t, ηk,αi 〉 =

n∑
i=1

〈wαF i(tk,α)∆t, S
k,α

i · δqk,αi +
∑

j∈anc(i)

S
k,α

j · qk,αj 〉

=

n∑
i=1

〈F k,αi +
∑

j∈des(i)

F
k,α

j , S
k,α

i · δqk,αi 〉

=

n∑
i=1

〈Γ k,αi , S
k,α

i · δqk,αi 〉

=

n∑
i=1

〈Sk,αi
T
Γ
k,α

i , δqk,αj 〉.

(D.10)
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From Eq. (2), we obtain

δq̇k,αi =
1

∆t

s∑
β=0

bαβ · δqk,βi . (D.11)

Substituting Eqs. (D.8) to (D.10) into Eq. (D.6) and simplifying the resulting equation
with Eq. (D.11) as well as the chain rule, we obtain

N−1∑
k=0

s∑
α=0

n∑
i=1

〈Sk,αi
T
·Ωk,αi +

s∑
β=0

aαβS
k,β

i

T
· µk,βi +Qk,αi , δqk,αi 〉 = 0

in which aαβ = wβbβα,Ω
k,α

i = wα∆t·adT
vk,αi
·µk,αi +Γ

k,α

i andQk,αi = ωαQi(t
k,α)∆t.

The equation above is equivalent to requiring

pki + S
k,0

i

T

·Ωk,0i +

s∑
β=0

a0βS
k,β

i

T

· µk,βi +Qk,0i = 0,

S
k,α

i

T

·Ωk,αi +

s∑
β=0

aαβS
k,β

i

T

· µk,βi +Qk,αi = 0 ∀α = 1, · · · , s− 1,

pk+1
i = S

k,s

i

T

·Ωk,si +

s∑
β=0

asβS
k,β

i

T

· µk,βi +Qk,si .

This completes the proof.

D.2 Proof of Proposition 2

In Section 3.2, we make the assumption on the discrete impulse F
k,α

i and discrete
joint force Qk,αi as follows.

Assumption 1. Let u(t) be control inputs of the mechanical system, we assume that
the discrete impulse F

k,α

i and discrete joint force Qk,αi can be respectively formulated

as F
k,α

i = F
k,α

i (gk,αi , vk,αi , uk,α) and Qk,αi = Qk,αi (qk,αi , q̇k,αi , uk,α) in which uk,α =
u(tk,α).

From the notion of the spatial variation in Section C.2, we have the following propo-
sition for the Newton direction computation, which is later used in the proof of Propo-
sition 2.

Proposition D.1. If δqk,αi is the Newton direction for qk,αi , rk,αi is the residue of the
DEL equations Eqs. (7a) and (7b), and Assumption 1 holds, the computation of the
Newton direction δqk,αi is equivalent to requiring

δµk,αi = M
k,α

i δvk,αi +
∑

j∈chd(i)

(
δµk,αj − adD

µk,αj
S
k,α

j · δqk,αj
)

∀α = 0, 1, · · · , s, (D.12a)
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δΓ
k,α

i =
(
D1F

k,α

i + adD
F
k,α
i

− advk,αi

)
· ηk,αi + D2F

k,α

i · δvk,αi +∑
j∈chd(i)

(
δΓ

k,α

j − adD
Γ
k,α
j

S
k,α

j · δqk,αj
)
∀α = 0, 1, · · · , s− 1, (D.12b)

δΩ
k,α

i = ωα∆t ·
(
adT
vk,αi
· δµk,αi + adD

µk,αi
δvk,αi

)
+ δΓ

k,α

i

∀α = 0, 1, · · · , s− 1, (D.12c)

S
k,α

i

T
δΩ

k,α

i +

s∑
β=0

aαβS
k,β

i

T
δµk,βi + D1Q

k,α
i · δqk,αi +

D2Q
k,α
i · δq̇k,αi = −rk,αi ∀α = 0, 1, · · · , s− 1. (D.12d)

in which δvk,αi , δµk,αi , δΓ
k,α

i and δΩ
k,α

i are the spatial variations of vk,αi , µk,αi , Γ
k,α

i

and Ω
k,α

i , respectively. Note that δqk,0i = 0 and ηk,0i = 0 though δvk,0i 6= 0.

Proof. Eqs. (D.12a) and (D.12c) are respectively the same as Eqs. (C.22) and (C.24),
thus we only need to prove Eqs. (D.12b) and (D.12d).

From Assumption 1, we have F
k,α

i = F
k,α

i (gk,αi , vk,αi , uk,α), and since δuk,αi = 0,
we obtain δF

k,α

i as

δF
k,α

i = D1F
k,α

i · ηk,αi + D2F
k,α

i · δvk,αi .

According to Eq. (C.16), the spatial variation δF
k,α

i is

δF
k,α

i = D1F
k,α

i · ηk,αi + D2F
k,α

i · δvk,αi + adT
ηk,αi

F
k,α

i .

Since δvk,αi = δvk,αi +adηk,αi
vk,αi , advk,αi

ηk,αi = −adηk,αi
vk,αi as well as adT

ηk,αi
F
k,α

i =

adD
F
k,α
i

ηk,αi , the equation above is equivalent to

δF
k,α

i =
(
D1F

k,α

i + adD
F
k,α
i

− D2F
k,α

i advk,αi

)
· ηk,αi + D2F

k,α

i · δvk,αi .

Substitute the equation above into Eq. (C.23), the result of which is Eq. (D.12b).
As for the proof of Eq. (D.12d), from Eqs. (7a) and (7b), the Newton direction δqk,αi

requires that

δ
(
Sk,αi

T
Ωi
)

+

s∑
β=0

aαβδ
(
Sk,βi

T
µk,βi

)
+ D1Q

k,α
i · δqk,αi +

D2Q
k,α
i · δq̇k,αi = −rk,αi ∀α = 0, 1, · · · , s− 1. (D.13)

As a result of Eqs. (C.17) and (C.18), we have δ
(
S
k,α

i

T
µk,αi

)
= S

k,α

i

T
δµk,αi and

δ
(
S
k,α

i

T
Ω
k,α

i

)
= S

k,α

i

T
δΩ

k,α

i , with which and Eq. (D.13), we obtain Eq. (D.12d).
This completes the proof.

14



In Section 3.2, Proposition 2 to compute the Newton direction is stated as follows,
for which note that the higher-order variational integrator has s + 1 control points and
the mechanical system has n degrees of freedom.

Proposition 2. For higher-order variational integrators of unconstrained mechani-
cal systems, if Assumption 1 holds and J k−1(qk) exists, the Newton direction δqk =

−J k−1(qk) · rk can be computed with Algorithm B.1 in O(s3n) time.

Proof. The proof consists of proving the correctness and the O(n) complexity of the
algorithms.

For each j ∈ chd(i), we suppose that there exists Dk,αρ
j , Gk,ανj , lk,αj and Πk,αρ

j ,
Ψk,ανj , ζk,αj such that

δµk,αj =
s∑
ρ=0

Dk,αρ
j · δvk,ρj +

s∑
ν=1

Gk,ανj · ηk,νj + lk,αj

∀α = 0, 1, · · · , s, (D.14)

δΓ
k,α

j =

s∑
ρ=0

Πk,αρ
j · δvk,ρj +

s∑
ν=1

Ψk,ανj · ηk,νj + ζk,αj

∀α = 0, 1, · · · , s− 1. (D.15)

According to Eqs. (C.3), (C.19) and (D.11), δvk,ρj and ηk,νj can be respectively com-
puted as

ηk,νj = ηk,νi + S
k,ν

j · δqk,νj (D.16)

and

δvk,ρj = δvk,ρi + Ṡk,ρj · δq
k,ρ
j +

1

∆t
S
k,ρ

j

s∑
γ=1

bργ · δqk,γj (D.17)

for which note that δqk,0j = 0. Substitute Eqs. (D.16) and (D.17) into Eq. (D.14), alge-
braic manipulation shows that

δµk,αj =

s∑
ρ=0

Dk,αρ
j · δvk,ρi +

s∑
ν=1

Gk,ανj · ηk,νi + lk,αj +

s∑
γ=1

Hk,αγ
j δqk,γj , (D.18)

in which

Hk,αγ
j = Dk,αγ

j Ṡk,γj +Gk,αγj S
k,γ

j +
1

∆t

s∑
ρ=0

bργDk,αρ
j S

k,ρ

j .

In a similar way, using Eqs. (D.15) to (D.17), we also have

δΓ
k,α

j =

s∑
ρ=0

Πk,αρ
j · δvk,ρi +

s∑
ν=1

Ψk,ανj · ηk,νi + ζk,α +

s∑
γ=1

Φk,αγj δqk,γj (D.19)
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in which

Φk,αγj = Πk,αγ
j Ṡk,γj + Ψk,αγj S

k,γ

j +
1

∆t

s∑
ρ=0

bργΠk,αρ
j S

k,ρ

j .

From Eqs. (C.12), (C.24) and (D.17) to (D.19) and

S
k,α

j

T
adT
S
k,α
j

µk,αj = S
k,α

j

T
adD
µk,αj

S
k,α

j = 0,

we obtain

S
k,α

j

T
δΩ

k,α

j =

s∑
ρ=0

Θk,αρj · δvk,ρi +

s∑
ν=1

Ξk,αν · ηk,νi + ξk,αj (D.20)

in which

Θk,αρj = wα∆t ·
(
Ṡ
k,α

j

T

Dk,αρ
j + σαρS

k,α

j

T

adD
µk,αj

)
+ S

k,α

j

T

Πk,αρ
j ,

Ξk,ανj = wα∆t · Ṡk,αj
T

Gk,ανj + S
k,α

j

T

Ψk,ανj ,

ξk,αj = wα∆t · Ṡk,αj
T

lk,αj + S
k,α

j

T

ζk,αj +

s∑
γ=1

[
wα∆t ·

(
Ṡj

k,α
T
Hk,αγ
j +

σαγS
k,α

j

T

adD
µk,αj

Ṡ
k,α

j

)
+ S

k,α

j

T

Φk,αγj

]
δqk,γj ,

and note that σαρ is given in Eq. (B.2) of Algorithm B.2. Substituting Eqs. (D.11),
(D.18) and (D.20) into Eq. (D.12d), we obtain

s∑
ρ=0

Θ
k,αρ

j · δvk,ρi +

s∑
ν=1

Ξ
k,αν

j · ηk,νi + ξ
k,α

j +

s∑
γ=1

Λk,αγj · δqk,γj = −rk,αj

∀α = 0, 1, · · · , s− 1. (D.21)

in which

Θ
k,αρ

j = Θk,αρj +

s∑
β=0

aαβS
k,β

j

T

Dk,βρ
j ,

Ξ
k,αν

j = Ξk,ανj +

s∑
β=0

aαβS
k,β

j

T

Gk,βνj ,

ξ
k,α

j = wα∆t · Ṡk,αj
T
lk,αj + S

k,α

j

T
ζk,αj +

s∑
β=0

aαβS
k,β

j

T
lk,βj ,

Λk,αγj =wα∆t · Ṡk,αj
T

Hk,αγ
j + S

k,α

j

T

Φk,αγj +

s∑
β=0

aαβS
k,β

j

T

Hk,βγ
j +

σαγ
(
D1Q

k,α
j + wα∆t · Sk,αj

T

adD
µk,αj

Ṡ
k,α

j

)
+

1

∆t
bαγ · D2Q

k,α
j .
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For notational convenience, we define ∆k,α
j to be

∆k,α
j =

s∑
ρ=0

Θ
k,αρ

j · δvk,ρi +

s∑
ν=1

Ξ
k,αν

j · ηk,νi + ξ
k,α

j

∀α = 0, 1, · · · , s− 1. (D.22)

such that Eq. (D.21) is rewritten as

s∑
γ=1

Λk,αγj · δqk,γj = −rk,αj −∆k,α
j ∀α = 0, 1, · · · , s− 1. (D.23)

In addition, if we further define Λkj , rkj , ∆k
j and δqkj respectively as

Λkj =
[
Λk,αγj

]
∈ Rs×s,

rkj =
[
rk,0j rk,1j · · · rk,s−1j

]T
∈ Rs,

∆k
j =

[
∆k,0
j ∆k,1

j · · · ∆k,s−1
j

]T
∈ Rs,

δqkj =
[
δqk,1j δqk,2j · · · δqk,sj

]T
∈ Rs,

in which 0 ≤ α ≤ s− 1 and 1 ≤ γ ≤ s, then Eq. (D.23) is equivalent to requiring

Λkj · δqkj = −rkj −∆k
j . (D.24)

in which Λkj is invertible since J k−1(qk) exists. From Eq. (D.24), we obtain

δqkj = −Λkj
−1

(rkj +∆k
j ).

If Λkj
−1 is explicitly written as Λkj

−1
=
[
Λ
k,γ%

j

]
∈ Rs×s in which 1 ≤ γ ≤ s and

0 ≤ % ≤ s− 1, expanding the equation above, we obtain

δqk,γj = −
s−1∑
%=0

Λ
k,γ%

j

(
rk,%j +∆k,%

j

)
∀γ = 1, 2, · · · , s. (D.25)

Substitute Eq. (D.22) into Eq. (D.25), the result is

δqk,γj =

s∑
ρ=0

Xk,γρ
j · δvk,ρi +

s∑
ν=1

Y k,γνj · ηk,νi + yk,γj (D.26)
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in which

Xk,γρ
j = −

s−1∑
%=0

Λ
k,γ%

j ·Θk,%ρj ,

Y k,γνj = −
s−1∑
%=0

Λ
k,γ%

j ·Ξk,%νj ,

yk,γj = −
s−1∑
%=0

Λ
k,γ%

j

(
rk,%j + ξ

k,%

j

)
.

Making use of Eqs. (D.18) and (D.26) and canceling out δqk,γj , we obtain

δµk,αj − adD
µk,αj

S
k,α

j · δqk,αj =

s∑
ρ=0

D
k,ρ

j · δv
k,ρ
i +

s∑
ν=1

G
k,αν

j · ηk,νi + l
k,α

j (D.27)

in which α = 0, 1, · · · , s, and

D
k,ρ

j = Dk,ρ
j +

s∑
γ=1

Hk,αγ
j Xk,γρ

j − σα0adD
µk,αj

S
k,α

j Xk,αρ
j , (D.28a)

G
k,ν

j = Gk,ανj +

s∑
γ=1

Hk,αγ
j Y k,γνj − σα0adD

µk,αj
S
k,α

j Y k,ανj , (D.28b)

l
k,α

j = lk,αj +

s∑
γ=1

Hk,αγ
j yk,γj − σα0adD

µk,αj
S
k,α

j yk,αj , (D.28c)

and note that σα0 is given in Eq. (B.2) of Algorithm B.2. In a similar way, using
Eqs. (D.19) and (D.26), we obtain

δΓ
k,α

j − adD
Γ
k,α
j

S
k,α

j · δqk,αj =

s∑
ρ=0

Π
k,αρ

j · δvk,ρj +

s∑
ν=1

Ψ
k,αν

j · ηk,νj + ζ
k,α

j (D.29)

in which α = 1, 2, · · · , s, and

Π
k,αρ

j = Πk,αρ
j +

s∑
γ=1

Φk,αγj Xk,γρ
j − σα0adD

Γ
k,α
j

S
k,α

j Xk,αρ
j , (D.30a)

Ψ
k,αν

j = Ψk,ανj +

s∑
γ=1

Φk,αγj Y k,γνj − σα0adD
Γ
k,α
j

S
k,α

j Y k,ανj , (D.30b)

ζ
k,α

j = ζk,αj +

s∑
γ=1

Φk,αγj yk,γj − σα0adD
Γ
k,α
j

S
k,α

j yk,αj . (D.30c)

Finally, for each j ∈ chd(i), substituting Eqs. (D.27) and (D.29) respectively into
Eqs. (D.12a) and (D.12b) and applying Eqs. (D.28) and (D.30) to expand D

k,ρ

j , G
k,ν

j ,
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l
k,α

j andΠ
k,αρ

j , Ψ
k,αν

j , ζ
k,α

j , we respectively obtainDk,ρ
i ,Gk,νi , lk,αi andΠk,αρ

i , Ψk,ανi ,
ζk,αi as Eqs. (B.1) and (B.3) of Algorithm B.2 such that

δµk,αi =

s∑
ρ=0

Dk,αρ
i · δvk,ρi +

s∑
ν=1

Gk,ανi · ηk,νi + lk,αi

∀α = 0, 1, · · · , s, (D.31)

δΓ
k,α

i =

s∑
ρ=0

Πk,αρ
i · δvk,ρi +

s∑
ν=1

Ψk,ανi · ηk,νi + ζk,αi

∀α = 0, 1, · · · , s− 1. (D.32)

In particular, note that even if rigid body i is the leaf node of the tree representation
whose chd(i) = Ø, there still exists Dk,ρ

i , Gk,νi , lk,αi and Πk,αρ
i , Ψk,ανi , ζk,αi from

Eqs. (B.1) and (B.3) of Algorithm B.2. Moreover, as long as Dk,ρ
i , Gk,νi , lk,αi and

Πk,αρ
i , Ψk,ανi , ζk,αi are given for each rigid body i, we can further obtainXk,αρ

i , Y k,ανi ,
yk,αi following lines 3 to 9 of Algorithm B.2.

In summary, for each rigid body i, we have shown that Xk,αρ
i , Y k,ανi , yk,αi as well

as Dk,ρ
i , Gk,νi , lk,αi and Πk,αρ

i , Ψk,ανi , ζk,αi are computable through the backward pass
by Algorithm B.2, and δqk,αi as well as ηk,αi and δvk,αi are computable through the
forward pass by lines 4 to 15 of Algorithm B.1, which proves the correctness of the
algorithms.

In regard to the complexity, Algorithm B.2 has O(s2) + O(s3) complexity since

there are O(s2) quantities and the computation of Λk,αi
−1

takes O(s3) time, and thus
the backward pass by lines 1 to 3 of Algorithm B.1 totally takes O(s3n + s2n) time.
Moreover, in lines 4 to 15 of Algorithm B.1, the forward pass takes O(s2n) time. As a
result, the overall complexity of Algorithm B.1 isO(s3n), which proves the complexity
of the algorithms.

D.3 Proof of Proposition 3

Proposition 3. For the kinetic energy K(q, q̇) of a mechanical system, ∂2K
∂q̇2 , ∂2K

∂q̇∂q ,
∂2K
∂q∂q̇ , ∂

2K
∂q2 can be recursively computed with Algorithm 2 in O(n2) time.

Proof. According to Eqs. (D.1), (D.8) and (D.9), we have

∂K

∂q̇i
= S

T

i

(
M ivi +

∑
i′∈des(i)

M i′vi′
)

(D.33)

and
∂K

∂qi
= Ṡ

T

i

(
M ivi +

∑
i′∈des(i)

M i′vi′
)
. (D.34)
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Since M ivi, Si and Ṡi only depend on qj and q̇j for j ∈ anc(i) ∪ {i}, it is straightfor-
ward to show from Eqs. (D.33) and (D.34) that the derivatives ∂2K

∂q̇i∂q̇j
, ∂2K
∂q̇i∂qj

, ∂2K
∂qi∂q̇j

and ∂2K
∂qi∂qj

can be respectively computed as

∂2K

∂q̇i∂q̇j
=


∂
∂q̇j

(
∂K
∂q̇i

)
j ∈ anc(i) ∪ {i},

∂2K
∂q̇j∂q̇i

j ∈ des(i),

0 otherwise,

(D.35)

∂2K

∂q̇i∂qj
=


∂
∂qj

(
∂K
∂q̇i

)
j ∈ anc(i) ∪ {i},

∂2K
∂qj∂q̇i

j ∈ des(i),

0 otherwise,

(D.36)

∂2K

∂qi∂q̇j
=


∂
∂q̇j

(
∂K
∂qi

)
j ∈ anc(i) ∪ {i},

∂2K
∂q̇j∂qi

j ∈ des(i),

0 otherwise,

(D.37)

∂2K

∂qi∂qj
=


∂
∂qj

(
∂K
∂qi

)
j ∈ anc(i) ∪ {i},

∂2K
∂qj∂qi

j ∈ des(i),

0 otherwise.

(D.38)

Therefore, we only need to consider the derivatives for j ∈ anc(i) ∪ {i}, whereas the
derivatives for j /∈ anc(i) ∪ {i} are computed from Eqs. (D.35) to (D.38). In addition,
if j ∈ anc(i) ∪ {i}, using Eqs. (C.14a), (C.10a), (C.11) and (C.12), we obtain

∂M ivi
∂q̇j

= M iSj , (D.39)

∂M ivi
∂qj

= −adT
Sj
M ivi −M iadSjvi +M iadSj (vi − vj)

= M iṠj − adT
Sj
M ivi (D.40)

∂Ṡi
∂q̇j

= adSjSi, (D.41)

∂Ṡi
∂qj

= adviadSjSi + adadSj
(vi−vj)Si. (D.42)

For notational clarity, we define µi,Mi,M
A

i andMB

i as

µi = M ivi +
∑

j∈des(i)

M jvj = M ivi +
∑

j∈chd(i)

µj , (D.43)
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Mi = M i +
∑

j∈des(i)

M j = M i +
∑

j∈chd(i)

Mj , (D.44)

MA

i =MiSi, (D.45)

MB

i =MiṠi − adDµiSi (D.46)

which will be used in the derivation of ∂2K
∂q̇i∂q̇j

, ∂2K
∂q̇i∂qj

, ∂2K
∂qi∂q̇j

and ∂2K
∂qi∂qj

.

1) ∂2K
∂q̇i∂q̇j

If j ∈ anc(i) ∪ {i}, from Eqs. (D.33), (D.39), (D.44) and (D.45), it is simple to
show that

∂2K

∂q̇i∂q̇j
=

∂

∂q̇j

(
∂K

∂q̇i

)
= S

T

i

(
M iSj +

∑
i′∈des(i)

M i′Sj

)
= S

T

i

(
M i +

∑
i′∈des(i)

M i′

)
Sj

= S
T

jMiSi

= S
T

jM
A

i .

(D.47)

2) ∂2K
∂q̇i∂qj

If j ∈ anc(i)∪ {i}, using Eqs. (C.7a), (D.33), (D.40), (D.44) and (D.45), we obtain

∂2K

∂q̇i∂qj
=

∂

∂qj

(
∂K

∂q̇i

)
=

∑
i′∈des(i)∪{i}

(
S
T

i M i′ Ṡj − S
T

i adT
Sj
M i′vi′ + S

T

i adT
Sj
M i′vi′

)
= S

T

i

(
M i +

∑
i′∈des(i)

M i′

)
Ṡj

= Ṡ
T

jMiSi

= Ṡ
T

jM
A

i .

(D.48)

3) ∂2K
∂q̇i∂qj
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If j ∈ anc(i)∪{i}, using Eqs. (D.34), (D.39), (D.41), (D.43) and (D.44), we obtain

∂2K

∂qi∂q̇j
=

∂

∂q̇j

(
∂K

∂qi

)
=

∑
i′∈des(i)∪{i}

(
Ṡ
T

i M i′Sj + S
T

i adT
Sj
M i′vi′

)
= S

T

j

(
M i +

∑
i′∈des(i)

M i′

)
Ṡi +

(
M ivi +

∑
i′∈des(i)

M i′vi′
)T

adSjSi

= S
T

jMiṠi + µTi adSjSi.

Then simplify the equation above with µTi adSjSi = −STj adDµiSi and Eq. (D.46), the
result is

∂2K

∂qi∂q̇j
= S

T

j

(
MiṠi − adDµiSi

)
= S

T

jM
B

i . (D.49)

4) ∂2K
∂qi∂qj

If j ∈ anc(i) ∪ {i}, using Eqs. (C.12), (D.34), (D.39), (D.40) and (D.42) to (D.44)
and adadviSj

= adviadSj − adSjadvi , we obtain

∂2K

∂qi∂qj
=

∂

∂qj

(
∂K

∂qi

)
=

∑
i′∈des(i)∪{i}

[ (
M i′vi′

)T (
adviadSjSi − adSjadviSi+

adadSj
(vi−vj)Si

)
+ Ṡ

T

j M i′ Ṡi

]
= Ṡ

T

j

(
M i +

∑
i′∈des(i)

M i′

)
Ṡi +

(
M ivi +

∑
i′∈des(i)

M i′vi′
)T

ad
Ṡj
Si

= Ṡ
T

jMiṠi + µTi ad
Ṡj
Si.

Similar to ∂2K
∂q̇i∂qj

, using µTi ad
Ṡj
Si = −ṠTj adDµiSi and Eq. (D.46), we obtain

∂2K

∂qi∂qj
= Ṡ

T

j

(
MiṠi − adDµiSi

)
= Ṡ

T

jM
B

i . (D.50)

Thus far, we have proved that ∂2K
∂q̇i∂q̇j

, ∂2K
∂q̇i∂qj

, ∂2K
∂qi∂q̇j

and ∂2K
∂qi∂qj

can be computed

using Eqs. (D.35) to (D.38) and (D.47) to (D.50) with which we further have ∂2K
∂q̇2 ,

∂2K
∂q̇∂q , ∂

2K
∂q∂q̇ and ∂2K

∂q2 computed.
As for the complexity of Algorithm 2, it takes O(n) time to pass the tree repre-

sentation forward to compute gi, Mi, Si, vi, Ṡi and another O(n) time to pass the
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tree representation backward to compute µi,Mi,M
A

i andMB

i . In the backward pass,
∂2K
∂q̇i∂q̇j

, ∂2K
∂q̇i∂qj

, ∂2K
∂qi∂q̇j

and ∂2K
∂qi∂qj

are computed for each i using Eqs. (D.35) to (D.38)
and (D.47) to (D.50) which totally takes at most O(n2) time. Therefore, the complexity
of Algorithm 2 is O(n2). This completes the proof.

D.4 Proof of Proposition 4

Proposition 4. If g ∈ R3 is gravity, then for the gravitational potential energy Vg(q),
∂2Vg

∂q2 can be recursively computed with Algorithm 3 in O(n2) time.

Proof. It is known that the gravitational potential energy Vg(q) is

Vg(q) = −
n∑
i=1

mi · gT pi. (D.51)

in which mi ∈ R is the mass of rigid body i and pi ∈ R3 is the mass center of rigid
body i as well as the origin of frame {i}. In addition, from Eqs. (C.5a) and (C.5b), we
have

∂pi
∂qj

=

{
ŝjpi + nj j ∈ anc(i) ∪ {i},
0 otherwise,

(D.52a)

and
∂pj
∂qi

=

{
ŝipj + ni j ∈ des(i) ∪ {i},
0 otherwise,

(D.52b)

in which si, ni ∈ R3 and Si =
[
sTi n

T
i

]T ∈ R6 is the spatial Jacobian of joint i. From
Eqs. (D.52b) and (D.51), algebraic manipulation gives

∂Vg
∂qi

= −STi
(
mi

[
p̂ig
g

]
+

∑
i′∈des(i)

mi′

[
p̂i′g
g

])
. (D.53)

Moreover, observe that Si and pi only depends on qj for j ∈ anc(i) ∪ {i}, we obtain
from Eq. (D.53) that

∂2Vg
∂qi∂qj

=


∂
∂qj

(
∂Vg

∂qi

)
j ∈ anc(i) ∪ {i},

∂2Vg

∂qj∂qi
j ∈ des(i),

0 otherwise,

(D.54)

which means that only ∂2Vg

∂qi∂qj
for j ∈ anc(i) ∪ {i} needs to be explicitly computed. If

j ∈ anc(i)∪{i}, using Eqs. (C.7a), (D.52a) and (D.53) as well as the equality âb = −b̂a
for any a, b ∈ R3, we obtain

∂2Vg
∂qi∂qj

=
∂

∂qj

(
∂Vg
∂qi

)
=

∑
i′∈des(i)∪{i}

mi′
[
sTi
(
ĝŝjpi′ + ŝj p̂i′g

)
− nTi ĝsj

]
.
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In addition, since p̂i′ ĝsj = −ĝŝjpi′ − ŝj p̂i′g and âT = −â for any a ∈ R3, the
equation above is equivalent to

∂2Vg
∂qi∂qj

= sTj ĝ

[(
mi +

∑
i′∈des(i)

mi′
)
ni −

(
mip̂i +

∑
i′∈des(i)

mi′ p̂i′
)
si

]
(D.55)

If we define
σmi = mi +

∑
j∈des(i)

mj = mi +
∑

j∈chd(i)

σmj ,

σpi = mipi +
∑

j∈des(i)

mjpj = mipi +
∑

j∈chd(i)

σpj ,

σAi = ĝ
(
σmi · ni − σ̂pi · si

)
,

then Eq. (D.55) is further simplified to

∂2Vg
∂qi∂qj

= sTj ĝ
(
σmini − σ̂pisi

)
= sTj σ

A
i . (D.56)

As a result, ∂
2Vg

∂q2 can be computed from Eqs. (D.54) and (D.56).
The O(n2) complexity of Algorithm 3 is as follows: the forward pass to compute

gi and Si and the backward pass to compute σmi , σpi and σAi take O(n) time, respec-

tively; and the computation of ∂2Vg

∂qi∂qj
=

∂2Vg

∂qj∂qi
= sTj σ

A
i totally takes O(n2) time.

Therefore, it can be concluded that Algorithm 3 has O(n2) complexity. This completes
the proof.
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